Đề thi giữa HK1 môn Toán 11 năm 2021-2022 - Trường THPT Cao Thắng
-
Hocon247
-
40 câu hỏi
-
60 phút
-
28 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Giải phương trình \({\tan ^2}3x - 1 = 0\).
Ta có: \({\tan ^2}3x - 1 = 0 \) \(\Leftrightarrow \left( {\tan 3x - 1} \right)\left( {\tan 3x + 1} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\tan 3x = 1\\\tan 3x = - 1\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}3x = \dfrac{\pi }{4} + k\pi \\3x = - \dfrac{\pi }{4} + k\pi \end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{{12}} + k\dfrac{\pi }{3}\\x = - \dfrac{\pi }{{12}} + k\dfrac{\pi }{3}\end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án D.
Tìm tập xác định \(D\) của hàm số \(y = \dfrac{{1 - 4\sin x}}{{\cos x}}\).
Điều kiện xác định:\(\cos x \ne 0 \Leftrightarrow x \ne \dfrac{\pi }{2} + k\pi \,\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án C.
Cho 6 chữ số 2, 3, 4, 5, 6, 7. Số các số tự nhiên chẵn có 3 chữ số được lập từ 6 chữ số trên là:
Gọi số cần tìm là \(\overline {abc} \;\left( {a,b,c \in \left\{ {2,3,4,5,6,7} \right\}} \right)\)
Theo yêu cầu đề bài ta có:
+ c có 3 cách chọn.
+ a có 6 cách chọn
+ b có 6 cách chọn.
Số các số cần tìm là \(3.6.6 = 108\) (số)
Chọn đáp án D.
Tính giá trị biểu thức \(P = {\sin ^2}{45^0} - \cos {60^0}\).
Ta có: \(P = {\sin ^2}{45^0} - \cos {60^0} \) \(= {\left( {\dfrac{{\sqrt 2 }}{2}} \right)^2} - \dfrac{1}{2} = \dfrac{1}{2} - \dfrac{1}{2} = 0\)
Chọn đáp án A.
Cho P, Q cố định và phép tịnh tiến T biến điểm M bất kỳ thành \({M_2}\) sao cho \(\overrightarrow {M{M_2}} = 2\overrightarrow {PQ} \). Chọn kết luận đúng
Gọi \({T_{\vec v}}\left( M \right) = {M_2} \Leftrightarrow \overrightarrow {M{M_2}} = \vec v\)
Từ \(\overrightarrow {M{M_2}} = 2\overrightarrow {PQ} \Rightarrow 2\overrightarrow {PQ} = \vec v\)
Chọn C.
Trong mặt phẳng Oxy, phép tịnh tiến theo vectơ \(\vec v = (1;3)\) biến điểm A (1;2) thành điểm nào trong các điểm sau đây ?
\({T_{\vec v}}\left( A \right) = B \Leftrightarrow \overrightarrow {AB} = \vec v \) \(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_B} = 1 + 1 = 2}\\{{y_B} = 2 + 3 = 5}\end{array}} \right. \Rightarrow B\left( {2;5} \right)\)
Chọn A.
Trong mặt phẳng với hệ trục tọa độ Oxy, cho phép tịnh tiến theo vectơ \(\vec v = ( - 3; - 2)\), phép tịnh tiến theo \(\vec v\) biến đường tròn \((C):{x^2} + {(y - 1)^2} = 1\) thành đường tròn \((C')\). Khi đó phương trình của \((C')\) là :
Lấy \(M\left( {x;y} \right) \in (C)\) tùy ý , ta có \({x^2} + {(y - 1)^2} = 1(*)\).
Gọi \(M'\left( {x';y'} \right) = {T_{\vec v}}\left( M \right)\)
Vì \({T_{\vec v}}\left( C \right) = \left( {C'} \right) \Rightarrow M' \in \left( {C'} \right)\)
Ta có \({T_{\vec v}}\left( M \right) = M' \)
\( \Leftrightarrow \left\{ \begin{array}{l}
x' = x - 3\\
y' = y - 2
\end{array} \right.\)
\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = x' + 3}\\{y = y' + 2}\end{array} \Rightarrow M\left( {x' + 3;y' + 2} \right)} \right.\)
Thay vào (*) ta được \({\left( {x' + 3} \right)^2} + {\left( {y' + 1} \right)^2} = 1\)
Mà \(M'\left( {x';y'} \right) \in \left( {C'} \right)\)
Vậy phương trình đường tròn\(\left( {C'} \right):{\left( {x + 3} \right)^2} + {\left( {y + 1} \right)^2} = 1\)
Chọn A.
Giải phương trình \({\mathop{\rm s}\nolimits} {\rm{in2}}x - \cos 2x = - \sqrt 2 \).
Ta có: \({\mathop{\rm s}\nolimits} {\rm{in2}}x - \cos 2x = - \sqrt 2 \) \(\Leftrightarrow \sqrt 2 \sin \left( {2x - \dfrac{\pi }{4}} \right) = - \sqrt 2 \)
\( \Leftrightarrow \sin \left( {2x - \dfrac{\pi }{4}} \right) = - 1\) \( \Leftrightarrow 2x - \dfrac{\pi }{4} = - \dfrac{\pi }{2} + k2\pi \)
\( \Leftrightarrow 2x = - \dfrac{\pi }{4} + k2\pi \) \( \Leftrightarrow x = - \dfrac{\pi }{8} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án C.
Phương trình nào sau đây có nghiệm?
Xét phương trình \(5\sin x - 2\cos x = 3\) có: \({5^2} + {\left( { - 2} \right)^2} > {3^2}\)
\( \Rightarrow \) Phương trình \(5\sin x - 2\cos x = 3\) có nghiệm.
Chọn đáp án A.
Tìm giá trị lớn nhất \(M\) của hàm số \(y = 7\cos 5x - 1\).
Ta có: \(y = 7\cos 5x - 1\) \( \Rightarrow 7.\left( { - 1} \right) - 1 \le y \le 7.1 - 1\) \( \Leftrightarrow - 8 \le y \le 6\)
Chọn đáp án C.
Có bao nhiêu số tự nhiên có 3 chữ số:
Các số tự nhiên có 3 chữ số là từ \(100 \to 999\) nên có tổng là 900 số.
Chọn đáp án A.
Cho các chữ số 1, 2, 3, …, 9. Từ các số đó có thể lập được bao nhiêu số có 4 chữ số đôi một khác nhau
Gọi số cần tìm có dạng \(\overline {abcd} \;\left( {a,b,c,d \in \left\{ {1,2,...,9} \right\}} \right)\)
Theo yêu cầu bài ta có:
+ a có 9 cách chọn.
+ b có 8 cách chọn.
+ c có 7 cách chọn.
+ d có 6 cách chọn.
Số các số cần tìm là \(9.8.7.6 = 3024\)(số)
Chọn đáp án A.
Từ thành phố A đến thành phố B có 6 con đường, từ thành phố B đến thành phố C có 7 con đường. Có bao nhiêu cách đi từ thành phố A đến thành phố C, biết phải đi qua thành phố B.
Theo yêu cầu đề bài:
+ Từ A đến B có 6 cách chọn đường.
+ Từ B đến C có 7 cách chọn đường.
Khi đó từ A đến C phải đi qua B có 42 cách chọn.
Chọn đáp án C.
Giả sử rằng qua phép đối xứng trục \({{\rm{D}}_a}\) ( a là trục đối xứng ), đường thẳng d biến thành đường thẳng \(d'\). Hãy chọn câu sai trong các câu sau ?
Khẳng định C sai vì khi d cắt a mà d vuông góc a thì d trùng d'.
Chọn C.
Trong mặt phẳng Oxy, cho parabol \((P):{y^2} = x\). Hỏi parabol nào sau đây là ảnh của parabol (P) qua phép đối xứng trục Oy ?
Gọi \(\left( {P'} \right) = \)ĐOy (P)
Gọi \(M\left( {x;y} \right) \in \left( P \right)\) tùy ý.
ĐOy(M) = \(M'\left( {x';y'} \right) \)\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = - x}\\{y' = y}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = - x'}\\{y = y'}\end{array}} \right. \) \(\Rightarrow M\left( { - x';y'} \right)\)
Vì \(M \in \left( P \right)\) nên \({y'^2} = - x'\)
Mặt khác\(M' \in \left( {P'} \right)\)
Vậy phương trình parabol \(\left( {P'} \right):{y^2} = - x\)
Chọn B.
Trong mặt phẳng Oxy, cho điểm M (1;5). Tìm ảnh của M qua phép đối xứng trục Ox.
Gọi \(M'(x';y')\) là ảnh của M qua ĐOx
Khi đó \(\left\{ \begin{array}{l}x' = 1\\y' = - 5\end{array} \right. \Rightarrow M'\left( {1; - 5} \right)\)
Chọn C.
Trong các mệnh đề sau mệnh đề nào đúng?
Phép đối xứng tâm có đúng 1 điểm biến thành chính nó. Điểm đó là tâm đối xứng.
Chọn B.
Giải phương trình \(\sqrt 3 \sin x + \cos x = 1\).
Ta có: \(\sqrt 3 \sin x + \cos x = 1\) \( \Leftrightarrow 2\left( {\frac{{\sqrt 3 }}{2}\sin x + \frac{1}{2}\cos x} \right) = 1\) \( \Leftrightarrow 2\sin \left( {x + \dfrac{\pi }{6}} \right) = 1\)
\( \Leftrightarrow \sin \left( {x + \dfrac{\pi }{6}} \right) = \dfrac{1}{2}\) \( \Leftrightarrow \left[ \begin{array}{l}x + \dfrac{\pi }{6} = \dfrac{\pi }{6} + k2\pi \\x + \dfrac{\pi }{6} = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = \dfrac{{2\pi }}{3} + k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án A.
Phương trình nào sau đây vô nghiệm?
Ta có: \(5 + 4\cos x = 0 \Leftrightarrow \cos x = - \dfrac{5}{4} < - 1\)
\( \Rightarrow \) phương trình \(5 + 4\cos x = 0\) vô nghiệm.
Chọn đáp án D.
Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và một loại nước uống trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn:
Theo yêu cầu bài:
+ Có 5 cách chọn món ăn
+ Có 5 cách chọn hao quả tráng miệng.
+ Có 3 cách chọn loại nước.
Vậy có 75 cách chọn thực đơn.
Chọn đáp án B.
Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).
Theo yêu cầu của bài toán
+ Một tuần có 7 ngày.
+ Mỗi ngày đi thăm một bạn trong 12 bạn
+ Có thể đi thăm một bạn nhiều lần.
Bạn A có thể lập được \({12^7} = 35831808\)
Chọn đáp án B.
Trong mặt phẳng Oxy, cho đường thẳng \(d:x + y - 2 = 0\), ảnh của d qua phép đối xứng tâm I (1;2) là đường thẳng:
Gọi \(d' = \)ĐI (d)
Giả sử phép đối xứng tâm \(I\left( {1;2} \right)\) biến \(M\left( {x;y} \right) \in d\) thành điểm \(M'\left( {x';y'} \right)\) suy ra \(M' \in d'\)
Ta có:
\(\left\{ {\begin{array}{*{20}{c}}{x' = 2.1 - x = 2 - x}\\{y' = 2.2 - y = 4 - y}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 2 - x'}\\{y = 4 - y'}\end{array}} \right. \) \(\Rightarrow M\left( {2 - x';4 - y'} \right).\)
\(M\left( {x;y} \right) \in d\) nên ta có \(\left( {2 - x'} \right) + \left( {4 - y'} \right) - 2 = 0 \) \(\Leftrightarrow x' + y' - 4 = 0\)
Mà \(M' \in d'\)
Vậy \(d':x + y - 4 = 0\)
Chọn B.
Trong mặt phẳng tọa độ Oxy, tìm phương trình đường tròn \((C')\) là ảnh của đường tròn \((C):{x^2} + {y^2} = 1\) qua phép đối xứng tâm I (1;0).
Lấy \(M\left( {x;y} \right) \in \left( C \right)\) tùy ý, ta có \({x^2} + {y^2} = 1\,\,\left( * \right)\)
Gọi \(M'\left( {x';y'} \right) = \) ĐI (M) \( \Rightarrow M' \in \left( {C'} \right)\)
Do ĐI (M) = \(M'\) nên \(\left\{ {\begin{array}{*{20}{c}}{x' = 2.1 - x}\\{y' = 2.0 - y}\end{array} \Leftrightarrow } \right.\left\{ {\begin{array}{*{20}{c}}{x' = 2 - x}\\{y' = - y}\end{array}} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}x = 2 - x'\\y = - y'\end{array} \right.\)
Thay vào (*) ta được: \({(2 - x')^2} + {( - y')^2} = 1\) \( \Leftrightarrow {(x' - 2)^2} + y{'^2} = 1\)
Mà \(M' \in \left( {C'} \right)\)
Vậy phương trình đường tròn \(\left( {C'} \right)\)là: \({(x - 2)^2} + {y^2} = 1\)
Chọn A.
Hàm số nào sau đây là hàm số chẵn.
Ta có: \(y = \cos x = \cos \left( { - x} \right) \Rightarrow \)\(y = \cos x\) là hàm số chẵn.
Chọn đáp án B.
Giải phương trình \(2{\sin ^2}x - 3\sin x - 2 = 0\).
Ta có: \(2{\sin ^2}x - 3\sin x - 2 = 0 \) \(\Leftrightarrow \left( {\sin x - 2} \right)\left( {2\sin x + 1} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 2(VN)\\\sin x = - \dfrac{1}{2}\end{array} \right. \) \(\Rightarrow \left[ \begin{array}{l}x = - \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{7\pi }}{6} + k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án C.
Giải phương trình \(\tan \left( {2x} \right) = \tan {\rm{8}}{0^0}\).
Ta có: \(\tan \left( {2x} \right) = \tan {\rm{8}}{0^0}\) \( \Leftrightarrow 2x = {80^0} + k{180^0} \) \(\Leftrightarrow x = {40^0} + k{90^0}\;\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án B.
Cho tam giác đều tâm O. Hỏi có bao nhiêu phép quay tâm O góc quay \(\alpha ,0 < \alpha \le 2\pi \) biến tam giác trên thành chính nó ?
Có 3 phép quay tâm O góc \(\alpha ,0 < \alpha \le 2\pi \) biến tam giác đều tâm O thành chính nó .
Đó là các phép quay với góc quay lần lượt bằng: \(\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},2\pi \).
Chọn C.
Phép quay \({Q_{(O;\varphi )}}\) biến điểm A thành M. Khi đó
(I): O cách đều A và M.
(II): O thuộc đường tròn đường kính AM.
(III): O nằm trên cung chứa góc\(\varphi \)dựng trên đoạn AM.
Trong các câu trên, câu đúng là:
Ta có \({Q_{\left( {O;\varphi } \right)}}(A) = M\) suy ra
+ OA= OM nên (I) đúng.
+ (II) xảy ra khi \(\Delta OAM\) vuông tại O, nói chung điều này không đúng, nên (II) sai.
+ \(\left( {OA,OM} \right) = \varphi \) nên (III) sai.
Chọn C.
Cho M ( 3;4) . Tìm ảnh của điểm M qua phép quay tâm O góc quay \({30^0}\).
Gọi \(M'\left( {x';y'} \right) = {Q_{\left( {O;{{30}^0}} \right)}}(M)\) .
Áp dụng biểu thức tọa độ \(\left\{ {\begin{array}{*{20}{c}}{x' = x\cos \alpha - y\sin \alpha }\\{y' = x\sin \alpha + y\cos \alpha }\end{array}} \right.\), ta có \(\left\{ {\begin{array}{*{20}{c}}{x' = 3\cos {{30}^0} - 4\sin {{30}^0} = \dfrac{{3\sqrt 3 }}{2} - 2}\\{y' = 3\sin {{30}^0} + 4\cos {{30}^0} = \dfrac{3}{2} + 2\sqrt 3 }\end{array}} \right.\) \( \Rightarrow M'\left( {\dfrac{{3\sqrt 3 }}{2} - 2;\dfrac{3}{2} + 2\sqrt 3 } \right)\)
Chọn D.
Trong mặt phẳng Oxy cho đường thẳng d có phương trình: x + y - 2 = 0. Hỏi phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến theo vectơ \(\vec v = \left( {3;2} \right)\) biến đường thẳng d thành đường thẳng nào trong các đường thẳng sau ?
Gọi \({d_1} = \)ĐO (d)
Gọi \({M_1}({x_1};{y_1})\)là ảnh của \(M(x;y) \in d\) qua ĐO\( \Rightarrow {M_1} \in {d_1}\)
Ta có \(\left\{ \begin{array}{l}{x_1} = - x\\{y_1} = - y\end{array} \right.\)
Gọi \({d_2} = {T_{\overrightarrow v }}({d_1})\)
Gọi \({M_2}({x_2};{y_2})\)là ảnh của \({M_1} \in {d_1}\) qua \({T_{\overrightarrow v }}\) \( \Rightarrow {M_2} \in {d_2}\)
Ta có \(\left\{ \begin{array}{l}{x_2} = {x_1} + 3\\{y_2} = {y_1} + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_2} = - x + 3\\{y_2} = - y + 2\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}x = 3 - {x_2}\\y = 2 - {y_2}\end{array} \right.\)
Mà \(M(x;y) \in d\)
Do đó \(3 - {x_2} + 2 - {y_2} - 2 = 0 \Leftrightarrow {x_2} + {y_2} - 3 = 0\)
Mặt khác \({M_2} \in {d_2}\)
Vậy \({d_2}:x + y - 3 = 0\)
Chọn D.
Giải phương trình \(1 + \cos x = 0\).
Ta có: \(1 + \cos x = 0\) \( \Leftrightarrow \cos x = - 1 \) \(\Leftrightarrow x = \pi + k2\pi \;\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án B.
Giải phương trình \(\sin 6x - \cos 4x = 0\).
Ta có: \(\sin 6x - \cos 4x = 0\) \( \Leftrightarrow \sin 6x = \cos 4x\)\( \Leftrightarrow \cos \left( {6x - \dfrac{\pi }{2}} \right) = \cos 4x\)
\( \Leftrightarrow \left[ \begin{array}{l}6x - \dfrac{\pi }{2} = 4x + k2\pi \\6x - \dfrac{\pi }{2} = - 4x + k2\pi \end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\x = \dfrac{\pi }{{20}} + k\dfrac{\pi }{5}\end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)
Chọn đáp án A.
Từ các số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chẵn:
Gọi số cần tìm có dạng \(\overline {abcd} \;\left( {a,b,c,d \in \left\{ {1,2,3,..,7} \right\};a \ne b \ne c \ne d} \right)\)
Theo yêu cầu bài toán ta có:
+ d có 3 cách chọn.
+ a có 6 cách chọn.
+ b có 5 cách chọn.
+ c có 4 cách chọn.
Vậy số các số cần tìm là \(6.5.4.3 = 360\)(số)
Chọn đáp án A.
Từ các số 2,3,4,5 có thể lập được bao nhiêu số gồm 4 chữ số:
Gọi số cần tìm dạng \(\overline {abcd} \;\left( {a,b,c,d \in \left\{ {2,3,4,5} \right\}} \right)\)
Theo yêu cầu của bài toán:
+ a có 4 cách chọn.
+ b có 4 cách chọn.
+ c có 4 cách chọn.
+ d có 4 cách chọn.
Số các số cần tìm là \({4^4} = 256\)
Chọn đáp án A.
Cho tập \(A = \left\{ {1,2,3,4,5,6,7,8} \right\}\). Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao cho các số này lẻ và không chia hết cho 5:
Gọi số cần tìm dạng \(\overline {abcdefgh} \)
Theo yêu cầu bài toán ta có:
+ h có 3 cách chọn.
+ a có 7 cách chọn.
+ b có 6 cách chon.
+ c có 5 cách chọn.
+ d có 4 cách chọn.
+ e có 3 cách chọn.
+ f có 2 cách chọn.
+ g có 1 cách chọn.
Vậy số các số cần tìm là 15120.
Chọn đáp án B
Cho phương trình \(\cos 4x = 3m - 5\). Tìm \(m\) để phương trình đã cho có nghiệm.
Phương trình \(\cos 4x = 3m - 5\) có nghiệm khi và chỉ khi: \( - 1 \le 3m - 5 \le 1 \Leftrightarrow \dfrac{4}{3} \le m \le 2\)
Chọn đáp án B.
Cho tam giác ABC với trọng tâm G. Gọi \(A',B',C'\) lần lượt là trung điểm của các cạnh BC, AC, AB của tam giác ABC. Khi đó phép vị tự nào biến tam giác \(A'B'C'\) thành tam giác ABC ?
Vì G là trọng tâm của tam giác ABC nên \(\overrightarrow {GA} = - 2\overrightarrow {GA'} ,\,\overrightarrow {GB} = - 2\overrightarrow {GB'} ,\) \(\overrightarrow {GC} = - 2\overrightarrow {GC'} .\)
Do đó phép vị tự \({V_{\left( {G; - 2} \right)}}\) biến tam giác \(A'B'C'\) thành tam giác ABC.
Chọn B.
Trong mặt phẳng với hệ trục tọa độ Oxy. Cho hai đường tròn \(\left( C \right),\left( {C'} \right)\) trong đó \(\left( {C'} \right)\) có phương trình: \({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 9\) . Gọi V là phép vị tự tâm \(I (1;0)\) tỉ số k = 3 biến đường tròn \(\left( C \right)\) thành \(\left( {C'} \right)\). Khi đó phương trình của \(\left( C \right)\) là:
Giả sử hai đường tròn \(\left( C \right),\,\left( {C'} \right)\) có tâm và bán kính lần lượt là \(O,O'\) và \(R,R'\)
\(\left( {C'} \right)\) có phương trình : \({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 9\)có tâm \(O'\left( { - 2;1} \right),R' = 3\)
Vì \({V_{(I;3)}}(C) = (C') \Rightarrow {V_{(I;3)}}(O) = (O')\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2 = 3x + \left( {1 - 3} \right).1}\\{ - 1 = 3y + \left( {1 - 3} \right).0}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = \dfrac{{ - 1}}{3}}\end{array}} \right. \Rightarrow O(0;\dfrac{{ - 1}}{3})\)
Lại có \(R' = 3R \Leftrightarrow R = 1(do\,{V_{(I;3)}}(C) = (C')\,\,)\)
Vậy phương trình của (C) là: \({x^2} + {\left( {y + \dfrac{1}{3}} \right)^2} = 1\)
Chọn C.
Cho phương trình \(2\cos 4x - {\rm{sin4}}x = m\) . Tìm tất cả các giá trị của \(m\) để phương trình đã cho có nghiệm.
Phương trình \(2\cos 4x - {\rm{sin4}}x = m\) có nghiệm khi và chỉ khi: \({2^2} + {\left( { - 1} \right)^2} \ge {m^2} \Leftrightarrow {m^2} \le 5\)
\( \Leftrightarrow - \sqrt 5 \le m \le \sqrt 5 \).
Chọn đáp án C.
Trong mặt phẳng với hệ trục tọa độ Oxy cho A (1;2), B (-3;1). Phép vị tự tâm I (2;-1) tỉ số k = 2 biến điểm A thành \(A'\), phép đối xứng tâm B biến \(A'\) thành \(B'\). Tọa độ điểm \(B'\) là :
Gọi \(A'(x';y')\).
Ta có \({V_{\left( {I;2} \right)}}\left( A \right) = A' \Leftrightarrow \overrightarrow {IA'} = 2\overrightarrow {IA} \) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = 0}\\{y' = 5}\end{array}} \right. \Rightarrow A'\left( {0;5} \right)\)
Gọi \(B'(x'';y'')\)
Vì ĐB\(\left( {A'} \right) = B'\)
nên \(\left\{ {\begin{array}{*{20}{c}}{x'' = 2.\left( { - 3} \right) - 0 = - 6}\\{y'' = 2.1 - 5 = - 3}\end{array}} \right. \Rightarrow B'\left( { - 6; - 3} \right)\)
Chọn C.
