Cho tam giác ABC với trọng tâm G. Gọi \(A',B',C'\) lần lượt là trung điểm của các cạnh BC, AC, AB của tam giác ABC. Khi đó phép vị tự nào biến tam giác \(A'B'C'\) thành tam giác ABC ?
A. Phép vị tự tâm G, tỉ số 2.
B. Phép vị tự tâm G, tỉ số - 2.
C. Phép vị tự tâm G, tỉ số - 3.
D. Phép vị tự tâm G, tỉ số 3.
Lời giải của giáo viên
ToanVN.com
Vì G là trọng tâm của tam giác ABC nên \(\overrightarrow {GA} = - 2\overrightarrow {GA'} ,\,\overrightarrow {GB} = - 2\overrightarrow {GB'} ,\) \(\overrightarrow {GC} = - 2\overrightarrow {GC'} .\)
Do đó phép vị tự \({V_{\left( {G; - 2} \right)}}\) biến tam giác \(A'B'C'\) thành tam giác ABC.
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho tam giác đều tâm O. Hỏi có bao nhiêu phép quay tâm O góc quay \(\alpha ,0 < \alpha \le 2\pi \) biến tam giác trên thành chính nó ?
Trong mặt phẳng Oxy, cho điểm M (1;5). Tìm ảnh của M qua phép đối xứng trục Ox.
Từ các số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chẵn:
Cho phương trình \(\cos 4x = 3m - 5\). Tìm \(m\) để phương trình đã cho có nghiệm.
Giải phương trình \(2{\sin ^2}x - 3\sin x - 2 = 0\).
Cho P, Q cố định và phép tịnh tiến T biến điểm M bất kỳ thành \({M_2}\) sao cho \(\overrightarrow {M{M_2}} = 2\overrightarrow {PQ} \). Chọn kết luận đúng
Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).
Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và một loại nước uống trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn:
Cho M ( 3;4) . Tìm ảnh của điểm M qua phép quay tâm O góc quay \({30^0}\).
Cho các chữ số 1, 2, 3, …, 9. Từ các số đó có thể lập được bao nhiêu số có 4 chữ số đôi một khác nhau
Giải phương trình \(\tan \left( {2x} \right) = \tan {\rm{8}}{0^0}\).
