Phép quay \({Q_{(O;\varphi )}}\) biến điểm A thành M. Khi đó
(I): O cách đều A và M.
(II): O thuộc đường tròn đường kính AM.
(III): O nằm trên cung chứa góc\(\varphi \)dựng trên đoạn AM.
Trong các câu trên, câu đúng là:
A. Cả 3 câu
B. (I) và (II)
C. (I)
D. (I) và (III)
Lời giải của giáo viên
ToanVN.com
Ta có \({Q_{\left( {O;\varphi } \right)}}(A) = M\) suy ra
+ OA= OM nên (I) đúng.
+ (II) xảy ra khi \(\Delta OAM\) vuông tại O, nói chung điều này không đúng, nên (II) sai.
+ \(\left( {OA,OM} \right) = \varphi \) nên (III) sai.
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho tam giác đều tâm O. Hỏi có bao nhiêu phép quay tâm O góc quay \(\alpha ,0 < \alpha \le 2\pi \) biến tam giác trên thành chính nó ?
Trong mặt phẳng Oxy, cho điểm M (1;5). Tìm ảnh của M qua phép đối xứng trục Ox.
Giải phương trình \(2{\sin ^2}x - 3\sin x - 2 = 0\).
Từ các số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chẵn:
Cho P, Q cố định và phép tịnh tiến T biến điểm M bất kỳ thành \({M_2}\) sao cho \(\overrightarrow {M{M_2}} = 2\overrightarrow {PQ} \). Chọn kết luận đúng
Cho phương trình \(\cos 4x = 3m - 5\). Tìm \(m\) để phương trình đã cho có nghiệm.
Cho các chữ số 1, 2, 3, …, 9. Từ các số đó có thể lập được bao nhiêu số có 4 chữ số đôi một khác nhau
Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).
Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và một loại nước uống trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn:
Giải phương trình \(\tan \left( {2x} \right) = \tan {\rm{8}}{0^0}\).
Cho M ( 3;4) . Tìm ảnh của điểm M qua phép quay tâm O góc quay \({30^0}\).
