Câu hỏi Đáp án 3 năm trước 127

Trong không gian với hệ toạ độ \(Oxyz\), gọi \(\left( \alpha  \right)\)là mặt phẳng song song với mặt phẳng \(\left( \beta  \right):2x - 4y + 4z + 3 = 0\) và cách điểm \(A\left( {2; - 3;4} \right)\) một khoảng \(k = 3\). Phương trình của mặt phẳng \(\left( \alpha  \right)\) là:

A. \(2x - 4y + 4z - 5 = 0\) hoặc \(2x - 4y + 4z - 13 = 0\).

B. x - 2y + 2z - 25 = 0

C. x - 2y + 2z - 7 = 0

D. \(x - 2y + 2z - 25 = 0\) hoặc \(x - 2y + 2z - 7 = 0\).

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Vì \(\left( \alpha  \right)//\left( \beta  \right)\)\( \Rightarrow \left( \alpha  \right):2x - 4y + 4z + m = 0\)\(\left( {m \ne 3} \right)\)

Giả thiết có \(d\left( {A,\left( \alpha  \right)} \right) = 3\)\( \Leftrightarrow \dfrac{{\left| {32 + m} \right|}}{6} = 3\)\( \Leftrightarrow \left[ \begin{array}{l}m =  - 14\\m =  - 50\end{array} \right.\)

Vậy \(\left( \alpha  \right):x - 2y + 2z - 7 = 0\), \(\left( \alpha  \right):x - 2y + 2z - 25 = 0\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian với hệ trục tọa độ \(Oxyz\), gọi \((P)\)là mặt phẳng song song với mặt phẳng \(Oxz\) và cắt mặt cầu \({(x - 1)^2} + {(y + 2)^2} + {z^2} = 12\)theo đường tròn có chu vi lớn nhất. Phương trình của \((P)\) là:

Xem lời giải » 3 năm trước 148
Câu 2: Trắc nghiệm

Tính tích phân \(\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {\cot x\,dx} \) ta được kết quả là :

Xem lời giải » 3 năm trước 146
Câu 3: Trắc nghiệm

Trong không gian với hệ trục tọa độ \(Oxyz\), cho tứ diện \(ABCD\) có các đỉnh \(A\left( {1;2;1} \right)\), \(B\left( { - 2;1;3} \right)\), \(C\left( {2; - 1;3} \right)\) và \(D\left( {0;3;1} \right)\). Phương trình mặt phẳng \(\left( \alpha  \right)\) đi qua \(A,B\) đồng thời cách đều \(C,D\)

Xem lời giải » 3 năm trước 145
Câu 4: Trắc nghiệm

Tìm nguyên hàm của hàm số \(f(x) = {2^{2x}}{.3^x}{.7^x}\).

Xem lời giải » 3 năm trước 144
Câu 5: Trắc nghiệm

Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng (P) đi qua hai điểm A(1;1;1), B(0;2;2) đồng thời cắt các tia Ox, Oy lần lượt tại hai điểm M, N (không trùng với gốc tọa độ\(O\)) sao cho OM = 2ON

Xem lời giải » 3 năm trước 142
Câu 6: Trắc nghiệm

Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(M(1;2;3).\) Gọi \((\alpha )\) là mặt phẳng chứa trục \(Oy\) và cách \(M\) một khoảng lớn nhất. Phương trình của \((\alpha )\) là:

Xem lời giải » 3 năm trước 142
Câu 7: Trắc nghiệm

Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = {x^3}\), trục hoành và hai đường thẳng x = - 1 , x = - 2 .

Xem lời giải » 3 năm trước 141
Câu 8: Trắc nghiệm

Tính nguyên hàm \(\int {\dfrac{{2{x^2} - 7x + 7}}{{x - 2}}\,dx} \) ta được:

Xem lời giải » 3 năm trước 140
Câu 9: Trắc nghiệm

Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt x  - x\) và trục hoành.

Xem lời giải » 3 năm trước 139
Câu 10: Trắc nghiệm

Tính nguyên hàm \(\int {{{\left( {{e^3}} \right)}^{\cos x}}\sin x\,dx} \) ta được:

Xem lời giải » 3 năm trước 137
Câu 11: Trắc nghiệm

Cho điểm \(I\left( {1;1; - 2} \right)\) đường thẳng \(d:\dfrac{{x + 1}}{1} = \dfrac{{y - 3}}{2} = \dfrac{{z - 2}}{1}.\) Phương trình mặt cầu \(\left( S \right)\)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:

Xem lời giải » 3 năm trước 137
Câu 12: Trắc nghiệm

Cho f(x) là hàm liên tục trên (a ; b) và không phải là hàm hằng. Giả sử F(x) là một nguyên hàm của f(x). Lựa chọn phương án đúng:

Xem lời giải » 3 năm trước 137
Câu 13: Trắc nghiệm

Tính nguyên hàm \(\int {{3^{{x^2}}}x\,dx} \) ta được:

Xem lời giải » 3 năm trước 136
Câu 14: Trắc nghiệm

Trong không gian với hệ toạ độ \(Oxyz\),cho hai đường thẳng \({d_1},{d_2}\)lần lượt có phương trình \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y - 2}}{1} = \dfrac{{z - 3}}{3}\), \({d_2}:\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{{ - 1}} = \dfrac{{z - 1}}{4}\). Phương trình mặt phẳng \(\left( \alpha  \right)\) cách đều hai đường thẳng \({d_1},{d_2}\) là:

Xem lời giải » 3 năm trước 134
Câu 15: Trắc nghiệm

Tìm nguyên hàm của hàm số \(f(x) = \dfrac{{{{\left( {{x^2} - 1} \right)}^2}}}{{{x^2}}}\).

Xem lời giải » 3 năm trước 134

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »