Lời giải của giáo viên
ToanVN.com
Ta có \([\overrightarrow{A B}, \overrightarrow{A C}] \cdot \overrightarrow{A D} \neq 0\) suy ra bốn điểm A , B , C , D không đồng phẳng.
Gọi (P) là mặt phẳng cách đều bốn điểm A, B, C, D .
TH1: Có một điểm nằm khác phía với ba điểm còn lại so với (P) . Có bốn mặt phẳng thỏa mãn.
TH2: Mỗi phía của mặt phẳng (P) có hai điểm. Có ba mặt phẳng thỏa mãn.
Vậy có bảy mặt phẳng thỏa mãn
CÂU HỎI CÙNG CHỦ ĐỀ
Diện tích hình phẳng giới hạn bởi \(y = x^2 , y = 0 , x = 1 , x = 2 \) bằng:
Trong không gian với hệ tọa độ Oxyz , cho điểm A(2;-1;3) và mặt phẳng \((P): 2 x-3 y+z-1=0\) . Viết phương trình đường thẳng d đi qua A và vuông góc với (P)
Trong không gian Oxyz cho hai điểm C(0;0;3) và M (-1;3;2) . Mặt phẳng (P) qua C, M đồng thời chắn trên các nửa trục dương Ox, Oy các đoạn thẳng bằng nhau. (P) có phương trình là :
Trong không gian Oxyz , cho điểm A(1;2;-1) và mặt phẳng \((P): x-y+2 z-3=0\) . Đường thẳng d đi qua A và vuông góc với mặt phẳng (P) có phương trình là
Điểm N là hình chiếu của M(x;y;z) trên trục tọa độ Oz thì:
Trong không gian (Oxyz ), cho điểm M thỏa mãn hệ thức \( \overrightarrow {OM} = 2\overrightarrow i + \overrightarrow j \). Tọa độ của điểm M là
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y-6z-2=0\). Viết phương trình mặt phẳng \(\left( \alpha \right)\) chứa trục Oy và cắt mặt cầu (S) theo thiết diện là một đường tròn có chu vi bằng \(8\pi \).
Tích phân \(\int_{0}^{\pi} x \cos \left(x+\frac{\pi}{4}\right) d x\) có giá trị bằng
Trong không gian với hệ toạ độ Oxyz , cho mặt phẳng \((P): x-2 y+2 z+9=0\) , mặt cầu (S) tâm O tiếp xúc với mặt phẳng (P) tại H(a;b;c) Tổng a+b+c bằng
Trong không gian với hệ tọa độ (Oxyz), cho vecto \(\overrightarrow {AO} = 3\left( {\vec i + 4\vec j} \right) - 2\overrightarrow k + 5\overrightarrow j \) Tọa độ điểm A là:
Trong các khẳng định dưới đây, khẳng định nào sai?
Trong không gian với hệ tọa độ Oxyz , cho các điểm \(A(-1 ;-2 ; 0), B(0 ;-4 ; 0), C(0 ; 0 ;-3)\). Phương trình mặt phẳng (P) nào dưới đây đi qua A , gốc tọa độ O và cách đều hai điểm B và C?
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(S\left( 0;0;1 \right)\). Hai điểm \(M\left( m;0;0 \right);N\left( 0;n;0 \right)\) thay đổi sao cho m + n = 1 và m > 0; n > 0. Biết rằng mặt phẳng (SMN) luôn tiếp xúc với một mặt cầu cố định. Bán kính mặt cầu đó bằng: \(R=\sqrt{2}\).
Trong không gian với hệ tọa độ Oxyz , cho điểm A(1;-1;1) và mặt phẳng \((P):-x+2 y-2 z+11=0\). Gọi (Q) là mặt phẳng song song (P) và cách A một khoảng bằng 2. Tìm phương trình mặt phẳng (Q).