Trong các khẳng định sau, khẳng định nào sai ?
A. Nếu f(x), g(x) là các hàm số liên tục trên R thì \(\int {\left[ {f(x) + g(x)} \right]} \,dx = \int {f(x)\,dx + \int {g(x)\,dx} } \)
B. Nếu các hàm số u(x), v(x) liên tục và có đạo hàm trên R thì \(\int {u(x)v'(x)\,dx + \int {v(x)u'(x)\,dx = u(x)v(x)} } \)
C. Nếu F(x) và G(x) đều là nguyên hàm của hàm số f(x) thì F(x) – G(x) = C ( với C là hằng số )
D. \(F(x) = {x^2}\) là một nguyên hàm của f(x) = 2x.
Lời giải của giáo viên
ToanVN.com
Áp dụng tính chất, định lý về nguyên hàm – tích phân ta có:
+ Nếu \(f\left( x \right),\,g\left( x \right)\) là các hàm số liên tục trên R thì \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx = \int {f\left( x \right)\,dx + \int {g\left( x \right)\,dx} } \)
+ Nếu các hàm số \(u\left( x \right),\;v\left( x \right)\) liên tục và có đạo hàm trên R thì \(\int {u\left( x \right)v'\left( {x\,} \right)dx + \int {v\left( x \right)u'\left( x \right)\,dx = u\left( x \right)v\left( x \right)} } \)
+ Ta có: \(\int {2x\,dx = {x^2} + C.} \)
⇒ Đáp án C sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Đổi biến u = lnx thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx} \) thành:
Tính nguyên hàm \(\int {{{\sin }^3}x.\cos x\,dx} \) ta được kết quả là:
Trong không gian \(Oxyz\) cho ba điểm \(A(2;5;3),B(3;7;4),C(x;y;6)\). Giá trị của \(x,y\) để ba điểm \(A,B,C\) thẳng hàng là
Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).
Cho tích phân \(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \). Phát biểu nào sau đây sai?
Giả sử hình phẳng tạo bởi đường cong \(y = {\sin ^2}x,\,\,y = - {\cos ^2}x\,,\,x = \pi ,\,x = 2\pi \) có diện tích là S. Lựa chọn phương án đúng :
Trong không gian \(Oxyz\) cho ba điểm \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) là
Trong không gian \(Oxyz\) cho tam giác \(ABC\) có \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) có diện tích bằng
Cho vectơ \(\overrightarrow a = \left( {1;3;4} \right)\), tìm vectơ \(\overrightarrow b \) cùng phương với vectơ \(\overrightarrow a \)
Nếu \(\int\limits_a^d {f(x)\,dx = 5\,,\,\,\int\limits_b^d {f(x)\,dx = 2} \,} \) với a < d < b thì \(\int\limits_a^b {f(x)\,dx} \) bằng :
Hàm số nào sau đây không phải là một nguyên hàm của: \(f(x) = {2^{\sqrt x }}\dfrac{{\ln x}}{{\sqrt x }}\) ?
Gọi \(\int {{{2009}^x}\,dx} = F(x) + C\) . Khi đó F(x) là hàm số:
Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt: