Một thùng rượu hình tròn xoay có bán kính ở trên là 30 cm và ở chính giữa là 40 cm. Chiều cao thùng rượu là 1m. Hỏi thùng rượu đó chứa được tối đa bao nhiêu lít rượu (kết quả lấy 2 chữ số thập phân) ? Cho rằng cạnh bên hông của thùng rượu là hình parabol.
.png)
A. 321,05 lít
B. 540,01 lít
C. 201,32 lít
D. 425,16 lít
Lời giải của giáo viên
ToanVN.com
Các đường xung quanh thùng rượu là các đường parabol.
Gọi đường parabol đó có dạng: \(y = a{x^2} + bx + c\)
Theo bài ra ta có đường parabol này sẽ đi qua các điểm (0;0,3),(0,5;04),(1;0,3)
Suy ra: \(y = - \frac{2}{5}{x^2} + \frac{2}{5}x + \frac{3}{{10}}\)
Thể tích thùng rượu chính là thể tích hình phẳng giới hạn bởi đường thẳng \(y = - \frac{2}{5}{x^2} + \frac{2}{5}x + \frac{3}{{10}}\); y = 0; x = 1
\( \Rightarrow V = \pi \int\limits_0^1 {{{\left( { - \frac{2}{5}{x^2} + \frac{2}{5}x + \frac{3}{{10}}} \right)}^2}dx} = \frac{{203\pi }}{{1500}}({m^3}) \approx 425,16(l)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hai mặt cầu (S1), (S2) có cùng bán kính R thỏa mãn tính chất: tâm của (S1) thuộc (S2) và ngược lại. Tính thể tích phần chung V của hai khối cầu tạo bởi (S1) và (S2).
Trong không gian với hệ tọa độ Oxyz, cho điểm A( - 2;0; - 2), B(0;3; - 3). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ điểm B đến mặt phẳng (P) là lớn nhất. Khoảng cách từ gốc tọa độ đến mặt phẳng (P) bằng:
Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;1;2) và hai đường thẳng \(d:\frac{x}{2} = \frac{{y - 1}}{1} = \frac{{z + 1}}{{ - 1}};\) và \(d':\left\{ \begin{array}{l} x = 1 + t\\ y = - 1 - 2t\\ z = 2 + t \end{array} \right.\). Phương trình mặt phẳng (P) đi qua A đồng thời song song với d và d' là :
Cho số phức z thỏa \(z = {\left( {2 + 2i} \right)^2}\). Trong các kết luận sau, kết luận nào đúng.
Cho hàm số f(x) có đạo hàm trên đoạn [0;3], f(0) = 2 và f(3) = 5. Tính \(I = \int\limits_0^3 {f'(x)dx} \).
Cho hai số phức \({z_1} = - 2 + 5i\) và \({z_2} = 1 - i\), số phức \({z_1}-{z_2}\) là:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(M\left( {2;3; - 1} \right),N\left( { - 1;1;1} \right),P\left( {1;m - 1;3} \right)\).
Với giá trị nào của m thì tam giác MNP vuông tại N?
Cho A, B, C lần lượt là ba điểm biểu diễn số phức \({z_1},\,{z_2},\,{z_3}\) thỏa \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|.\) Mệnh đề nào sau đây là đúng?
Cho số phức z = a + bi thỏa \(z + 2\overline z = 3 - i\). Khi đó a - b bằng
Gọi z1, z2 là hai nghiệm \({z^2} - 6z + 10 = 0\) của phương trình. Tính \(\left| {{z_1} - {z_2}} \right|.\)
Cho hàm số f(x) liên tục trên R và \(\int\limits_0^{{\pi ^2}} {f(x)dx = 2018} \), tính \(I = \int\limits_0^\pi {xf({x^2}} )dx\)
Biết phương trình \({z^2} + az + b = 0\) có một nghiệm là z = 1 + i. Môđun của số phức w = a + bi là:
Tìm nguyên hàm \(I = \int {\frac{{{e^{\ln x}}}}{x}dx} \).
Cho số phức z thỏa |z| = 4. Biết rằng tập hợp các điểm biểu diễn của số phức \({\rm{w}} = \left( {3 + 4i} \right)z + i\) là một đường tròn. Bán kính r của đường tròn đó là:
Trong không gian với hệ tọa độ Oxy, cho mặt phẳng \(\left( P \right):x + y - 8 = 0\) và điểm I(-1;-1;0). Mặt cầu tâm I và tiếp xúc với mặt phẳng (P) có phương trình là: