Lời giải của giáo viên
ToanVN.com
Ta có: \(\overrightarrow i .\overrightarrow j = \overrightarrow j .\overrightarrow k = \overrightarrow k .\overrightarrow i = 0\) nên các đáp án A, B, D đều đúng.
Đáp án C sai vì tích vô hướng hai véc tơ là một số, không phải một véc tơ.
CÂU HỎI CÙNG CHỦ ĐỀ
Xét f(x) là một hàm số liên tục trê đoạn [a ; b], ( với a < b) và F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a ; b]. Mệnh đề nào dưới đây đúng ?
Cho hàm số \(y = f(x) = {x^3} - 3{x^2} - 4x\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số trên và trục Ox được tính bằng công thức:
Cho điểm \(M\left( {1;2; - 3} \right)\), hình chiếu vuông góc của điểm \(M\)trên mặt phẳng \(\left( {Oxy} \right)\)là điểm
Họ nguyên hàm của hàm số \(f(x) = \dfrac{{\sin x}}{{{{\cos }^2}x}}\) là
Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt {2 - x} ,\,y = x\) xung quanh trục Ox được tính theo công thức nào sau đây :
Cho \(f(x) = \dfrac{{4m}}{\pi } + {\sin ^2}x\). Tìmmđể nguyên hàm F(x) của hàm số f(x) thỏa mãn F(0) = 1 và \(F\left( {\dfrac{\pi }{4}} \right) = \dfrac{\pi }{8}\).
Tính nguyên hàm \(\int {\dfrac{{{{\left( {3\ln x + 2} \right)}^4}}}{x}\,dx} \) ta được:
Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta được:
Tích phân \(I = \int\limits_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{\sin x}}} \) có giá trị bằng:
Cho f(x), g(x) là các hàm liên tục trên [a ; b]. Lựa chọn phương án đúng.
Trong không gian tọa độ \(Oxyz\) cho ba điểm \(M\left( {1;1;1} \right),\,N\left( {2;3;4} \right),\,P\left( {7;7;5} \right)\). Để tứ giác \(MNPQ\) là hình bình hành thì tọa độ điểm \(Q\) là
Cho điểm \(M\left( { - 2;5;1} \right)\), khoảng cách từ điểm \(M\) đến trục \(Ox\) bằng
Tích phân \(I = \int\limits_1^e {2x\left( {1 - \ln x} \right)\,dx} \) bằng :