Cho \(I = \int\limits_1^2 {2x\sqrt {{x^2} - 1} \,dx\,,\,\,u = {x^2} - 1} \). Khẳng định nào dưới đây sai ?
A. \(I = \int\limits_0^3 {\sqrt u \,du} \).
B. \(I = \dfrac{2}{3}\sqrt {27} \).
C. \(\int\limits_1^2 {\sqrt u \,du} \).
D. \(I = \dfrac{2}{3}{u^{\dfrac{3}{2}}}\left| \begin{array}{l}3\\0\end{array} \right.\).
Lời giải của giáo viên
ToanVN.com
Đặt \(u = {x^2} - 1 \Rightarrow du = 2x\,dx\)
Đổi cận: \(\left\{ \begin{array}{l}x = 1 \to u = 0\\x = 2 \to u = 3\end{array} \right.\)
Khi đó \(I = \int\limits_1^2 {2x\sqrt {{x^2} - 1} \,dx\, = \int\limits_0^3 {\sqrt u } } \,du\)
\( \to \) Đáp án C sai
CÂU HỎI CÙNG CHỦ ĐỀ
Xét f(x) là một hàm số liên tục trê đoạn [a ; b], ( với a < b) và F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a ; b]. Mệnh đề nào dưới đây đúng ?
Cho điểm \(M\left( {1;2; - 3} \right)\), hình chiếu vuông góc của điểm \(M\)trên mặt phẳng \(\left( {Oxy} \right)\)là điểm
Cho hàm số \(y = f(x) = {x^3} - 3{x^2} - 4x\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số trên và trục Ox được tính bằng công thức:
Cho \(f(x) = \dfrac{{4m}}{\pi } + {\sin ^2}x\). Tìmmđể nguyên hàm F(x) của hàm số f(x) thỏa mãn F(0) = 1 và \(F\left( {\dfrac{\pi }{4}} \right) = \dfrac{\pi }{8}\).
Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt {2 - x} ,\,y = x\) xung quanh trục Ox được tính theo công thức nào sau đây :
Họ nguyên hàm của hàm số \(f(x) = \dfrac{{\sin x}}{{{{\cos }^2}x}}\) là
Tính nguyên hàm \(\int {\dfrac{{{{\left( {3\ln x + 2} \right)}^4}}}{x}\,dx} \) ta được:
Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta được:
Cho f(x), g(x) là các hàm liên tục trên [a ; b]. Lựa chọn phương án đúng.
Tích phân \(I = \int\limits_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{\sin x}}} \) có giá trị bằng:
Trong không gian tọa độ \(Oxyz\) cho ba điểm \(M\left( {1;1;1} \right),\,N\left( {2;3;4} \right),\,P\left( {7;7;5} \right)\). Để tứ giác \(MNPQ\) là hình bình hành thì tọa độ điểm \(Q\) là
Tìm \(I = \int {\left( {2{x^2} - \dfrac{1}{{\sqrt[3]{x}}} - \dfrac{1}{{{{\cos }^2}x}}} \right)\,dx} \) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\).
Tích phân \(I = \int\limits_1^e {2x\left( {1 - \ln x} \right)\,dx} \) bằng :