Câu hỏi Đáp án 3 năm trước 127

Cho các điểm \(I\left( {1;1; - 2} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x =  - 1 + t\\y = 3 + 2t\\z = 2 + t\end{array} \right.\). Phương trình mặt cầu \(\left( S \right)\)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông là:

A. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 3.\)  

B. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 9.\)

C. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 9.\)

D. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 36.\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Đường thẳng \(d\) đi qua \(M\left( { - 1;{\rm{ 3}};2} \right)\)và có vectơ chỉ phương \(\overrightarrow u  = \left( {1;\,2;\,1} \right)\).

Gọi H là hình chiếu của I trên D. Ta có : \(IH = d\left( {I;AB} \right) = \dfrac{{\left| {\left[ {\overrightarrow u ,\overrightarrow {MI} } \right]} \right|}}{{\left| {\overrightarrow u } \right|}} = \sqrt {18} \)

\( \Rightarrow {R^2} = I{H^2} + {\left( {\dfrac{{AB}}{2}} \right)^2} = 36\).

Vậy phương trình mặt cầu là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 36.\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian với hệ trục tọa độ \(Oxyz\), gọi \((P)\)là mặt phẳng song song với mặt phẳng \(Oxz\) và cắt mặt cầu \({(x - 1)^2} + {(y + 2)^2} + {z^2} = 12\)theo đường tròn có chu vi lớn nhất. Phương trình của \((P)\) là:

Xem lời giải » 3 năm trước 149
Câu 2: Trắc nghiệm

Tính tích phân \(\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {\cot x\,dx} \) ta được kết quả là :

Xem lời giải » 3 năm trước 147
Câu 3: Trắc nghiệm

Trong không gian với hệ trục tọa độ \(Oxyz\), cho tứ diện \(ABCD\) có các đỉnh \(A\left( {1;2;1} \right)\), \(B\left( { - 2;1;3} \right)\), \(C\left( {2; - 1;3} \right)\) và \(D\left( {0;3;1} \right)\). Phương trình mặt phẳng \(\left( \alpha  \right)\) đi qua \(A,B\) đồng thời cách đều \(C,D\)

Xem lời giải » 3 năm trước 146
Câu 4: Trắc nghiệm

Tìm nguyên hàm của hàm số \(f(x) = {2^{2x}}{.3^x}{.7^x}\).

Xem lời giải » 3 năm trước 145
Câu 5: Trắc nghiệm

Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng (P) đi qua hai điểm A(1;1;1), B(0;2;2) đồng thời cắt các tia Ox, Oy lần lượt tại hai điểm M, N (không trùng với gốc tọa độ\(O\)) sao cho OM = 2ON

Xem lời giải » 3 năm trước 143
Câu 6: Trắc nghiệm

Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(M(1;2;3).\) Gọi \((\alpha )\) là mặt phẳng chứa trục \(Oy\) và cách \(M\) một khoảng lớn nhất. Phương trình của \((\alpha )\) là:

Xem lời giải » 3 năm trước 142
Câu 7: Trắc nghiệm

Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = {x^3}\), trục hoành và hai đường thẳng x = - 1 , x = - 2 .

Xem lời giải » 3 năm trước 141
Câu 8: Trắc nghiệm

Tính nguyên hàm \(\int {\dfrac{{2{x^2} - 7x + 7}}{{x - 2}}\,dx} \) ta được:

Xem lời giải » 3 năm trước 140
Câu 9: Trắc nghiệm

Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt x  - x\) và trục hoành.

Xem lời giải » 3 năm trước 139
Câu 10: Trắc nghiệm

Tính nguyên hàm \(\int {{{\left( {{e^3}} \right)}^{\cos x}}\sin x\,dx} \) ta được:

Xem lời giải » 3 năm trước 138
Câu 11: Trắc nghiệm

Cho f(x) là hàm liên tục trên (a ; b) và không phải là hàm hằng. Giả sử F(x) là một nguyên hàm của f(x). Lựa chọn phương án đúng:

Xem lời giải » 3 năm trước 138
Câu 12: Trắc nghiệm

Cho điểm \(I\left( {1;1; - 2} \right)\) đường thẳng \(d:\dfrac{{x + 1}}{1} = \dfrac{{y - 3}}{2} = \dfrac{{z - 2}}{1}.\) Phương trình mặt cầu \(\left( S \right)\)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:

Xem lời giải » 3 năm trước 138
Câu 13: Trắc nghiệm

Tính nguyên hàm \(\int {{3^{{x^2}}}x\,dx} \) ta được:

Xem lời giải » 3 năm trước 136
Câu 14: Trắc nghiệm

Trong không gian với hệ toạ độ \(Oxyz\),cho hai đường thẳng \({d_1},{d_2}\)lần lượt có phương trình \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y - 2}}{1} = \dfrac{{z - 3}}{3}\), \({d_2}:\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{{ - 1}} = \dfrac{{z - 1}}{4}\). Phương trình mặt phẳng \(\left( \alpha  \right)\) cách đều hai đường thẳng \({d_1},{d_2}\) là:

Xem lời giải » 3 năm trước 134
Câu 15: Trắc nghiệm

Tìm nguyên hàm của hàm số \(f(x) = \dfrac{{{{\left( {{x^2} - 1} \right)}^2}}}{{{x^2}}}\).

Xem lời giải » 3 năm trước 134

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »