Cho 3 điểm \(M(0;1;0),N(0;1; - 4),P(2;4;0)\). Nếu \(MNPQ\) là hình bình hành thì tọa độ của điểm \(Q\) là
A. \(Q = \left( { - 2; - 3;4} \right)\)
B. \(Q = \left( {2;3;4} \right)\)
C. \(Q = \left( {3;4;2} \right)\)
D. \(Q = \left( { - 2; - 3; - 4} \right)\)
Lời giải của giáo viên
ToanVN.com
Gọi \(Q(x;y;z)\), \(MNPQ\) là hình bình hành thì \(\overrightarrow {NM} = \overrightarrow {PQ} \)\( \Leftrightarrow \)\(\left\{ {\begin{array}{*{20}{c}}{x - 2=0}\\{y -4= -1}\\{z = 4}\end{array}} \right.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Đổi biến u = lnx thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx} \) thành:
Tính nguyên hàm \(\int {{{\sin }^3}x.\cos x\,dx} \) ta được kết quả là:
Trong không gian \(Oxyz\) cho ba điểm \(A(2;5;3),B(3;7;4),C(x;y;6)\). Giá trị của \(x,y\) để ba điểm \(A,B,C\) thẳng hàng là
Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).
Cho tích phân \(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \). Phát biểu nào sau đây sai?
Giả sử hình phẳng tạo bởi đường cong \(y = {\sin ^2}x,\,\,y = - {\cos ^2}x\,,\,x = \pi ,\,x = 2\pi \) có diện tích là S. Lựa chọn phương án đúng :
Trong không gian \(Oxyz\) cho ba điểm \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) là
Trong không gian \(Oxyz\) cho tam giác \(ABC\) có \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) có diện tích bằng
Gọi \(\int {{{2009}^x}\,dx} = F(x) + C\) . Khi đó F(x) là hàm số:
Nếu \(\int\limits_a^d {f(x)\,dx = 5\,,\,\,\int\limits_b^d {f(x)\,dx = 2} \,} \) với a < d < b thì \(\int\limits_a^b {f(x)\,dx} \) bằng :
Cho vectơ \(\overrightarrow a = \left( {1;3;4} \right)\), tìm vectơ \(\overrightarrow b \) cùng phương với vectơ \(\overrightarrow a \)
Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta thu được:
Cho \(\left| {\overrightarrow a } \right| = 2;\,\left| {\overrightarrow b } \right| = 5,\) góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) bằng \(\frac{{2\pi }}{3}\), \(\overrightarrow u = k\overrightarrow a - \overrightarrow b ;\,\overrightarrow v = \overrightarrow a + 2\overrightarrow b .\) Để \(\overrightarrow u \) vuông góc với \(\overrightarrow v \) thì k bằng