Lời giải của giáo viên
ToanVN.com
+) Xét bộ ba: 3cm, 3cm, 5cm. Ta có: \(\left\{ \begin{align} & 3+3=6>5 \\ & 5+3=8>3 \\ \end{align} \right.\) (thỏa mãn bất đẳng thức tam giác) nên bộ ba 3cm, 3cm, 5cm lập thành một tam giác cân.Chọn đáp án A.
+) Xét bộ ba: 1cm, 3cm, 6cm. Ta có: \(1+3=4<6\) ( không thỏa mãn bất đẳng thức tam giác) nên bộ ba 1cm, 3cm, 6cm không lập thành một tam giác. Loại đáp án B.
+) Xét bộ ba: 2cm, 3cm, 5cm. Ta có: \(2+3=5\) (không thỏa mãn bất đẳng thức tam giác) nên bộ ba 2cm, 3cm, 5cm không lập thành một tam giác. Loại đáp án C.
+) Xét bộ ba: 1cm, 4cm, 7cm. Ta có: \(1+4=5<7\) (không thỏa mãn bất đẳng thức tam giác) nên bộ ba 1cm, 4cm, 7cm không lập thành một tam giác. Loại đáp án D.
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong các số sau, số nào là nghiệm của đa thức: \(F\left( x \right) = {x^2} + 2x - 3\)
Cho đa thức \(f\left( x \right) = a{x^2} + bx + c\). Tính giá trị của \(f\left( { - 1} \right)\) biết \(a + c = b + 2018\).Giá trị của \(f(-1)=?\)
Thu gọn đơn thức \( - {x^3}{\left( {xy} \right)^4}\frac{1}{3}{x^2}{y^3}{z^3}\) kết quả là:
Tìm bậc, hệ số tự do, hệ số cao nhất của \(A\left( x \right)\) . Tính \(A\left( { - 2} \right).\)
Cho hai đa thức \(P\left( x \right) = - {x^3} + 2{x^2} + x - 1\) và \(Q\left( x \right) = {x^3} - {x^2} - x + 2\) nghiệm của đa thức \(P\left( x \right) + Q\left( x \right)\) là:
Kết quả kiểm tra phần thi tang cầu của môn thể dục được cô giáo ghi lại như sau:
Mỗi học sinh phải tâng được ít nhất 4 quả cầu mới đạt. Số học sinh thi đạt bài kiểm tra là:
Số cân nặng của 17 học sinh nam (làm tròn đến kg) trong một lớp được ghi lại như sau:
Số tất cả các giá trị của dấu hiệu là:
Cho tam giác \(ABC\) có \(\angle A = {50^0},\,\angle B = {60^0},\,\angle C = {70^0}\). Hãy so sánh các cạnh của tam giác \(ABC\).
Thu gọn và sắp xếp các hạng tử của mỗi đa thức sau theo lũy thừa giảm dần của biến.
Thu gọn và sắp xếp đa thức đã cho theo lũy thừa giảm dần của biến.
Tìm đa thức \(C\left( x \right)\) biết \(C\left( x \right) - 2.B\left( x \right) = A\left( x \right).\)
Bậc của đa thức \(f\left( x \right) = - 7{x^4} + 4{x^3} + 8{x^2} - 5{x^3} - {x^4} + 5{x^3} + 4{x^4} + 2018\) là:
Thu gọn, sắp xếp đa thức \(B\left( x \right)\) theo lũy thừa giảm dần của biến.
Cho \(\Delta ABC\) có \(\angle A = {70^0},\,\angle B = {50^0}\) khi đó: