Lời giải của giáo viên
ToanVN.com
Ta có \(f\left( x \right) = {\left( {6x + 1} \right)^2} = 36{x^2} + 12x + 1\)
Khi đó ta có: \(\int {\left( {36{x^2} + 12x + 1} \right)\,dx} \)\(\,= 12{x^3} + 6{x^2} + x + d\)
\( \Rightarrow F\left( x \right) = 12{x^3} + 6{x^2} + x + d\)
Theo giải thiết ta có \(F\left( { - 1} \right) = 20 \)
\(\Rightarrow 12.\left( { - 1} \right){}^3 + 6.{\left( { - 1} \right)^2} + \left( { - 1} \right) + d = 20 \)
\(\Leftrightarrow d = 27\)
Vậy: \(a + b + c + d = 12 + 6 + 1 + 27 = 46.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Đổi biến u = lnx thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx} \) thành:
Tính nguyên hàm \(\int {{{\sin }^3}x.\cos x\,dx} \) ta được kết quả là:
Trong không gian \(Oxyz\) cho ba điểm \(A(2;5;3),B(3;7;4),C(x;y;6)\). Giá trị của \(x,y\) để ba điểm \(A,B,C\) thẳng hàng là
Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).
Cho tích phân \(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \). Phát biểu nào sau đây sai?
Trong không gian \(Oxyz\) cho ba điểm \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) là
Giả sử hình phẳng tạo bởi đường cong \(y = {\sin ^2}x,\,\,y = - {\cos ^2}x\,,\,x = \pi ,\,x = 2\pi \) có diện tích là S. Lựa chọn phương án đúng :
Trong không gian \(Oxyz\) cho tam giác \(ABC\) có \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) có diện tích bằng
Gọi \(\int {{{2009}^x}\,dx} = F(x) + C\) . Khi đó F(x) là hàm số:
Nếu \(\int\limits_a^d {f(x)\,dx = 5\,,\,\,\int\limits_b^d {f(x)\,dx = 2} \,} \) với a < d < b thì \(\int\limits_a^b {f(x)\,dx} \) bằng :
Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta thu được:
Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:
Cho vectơ \(\overrightarrow a = \left( {1;3;4} \right)\), tìm vectơ \(\overrightarrow b \) cùng phương với vectơ \(\overrightarrow a \)