Lời giải của giáo viên
ToanVN.com
Ta có: \(\int {\left( {\dfrac{1}{{x - 1}}} \right)} \,dx = \int {\dfrac{1}{{x - 1}}\,d\left( {x - 1} \right) }\)\(\,= \ln \left| {x - 1} \right| + C\)
Theo giả thiết ta có: \(F\left( 2 \right) = 1 \Rightarrow \ln 1 + C = 1 \Leftrightarrow C = 1.\)
Khi đó ta có: \(F\left( 3 \right) = \ln 2 + 1.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi S là hình phẳng giới hạn bởi đồ thị hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) và các trục tọa độ. Khi đó giá trị của S bằng :
Trong không gian với hệ trục tọa độ \(Oxyz\), cho ba điểm \(A(1;2; - 1)\), \(B(2; - 1;3)\),\(C( - 2;3;3)\). Điểm\(M\left( {a;b;c} \right)\) là đỉnh thứ tư của hình bình hành \(ABCM\), khi đó \(P = {a^2} + {b^2} - {c^2}\) có giá trị bằng
Hàm số nào dưới đây không là nguyên hàm của \(f(x) = \dfrac{{2x\left( {x + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}}\) ?
Tích phân \(\int\limits_0^1 {x\sqrt {{x^2} + 1} } dx = \dfrac{{a\sqrt 2 - b}}{3}\) thì a + b bằng :
Trong không gian với hệ toạ độ \(Oxyz\),tọa độ điểm \(M\) nằm trên trục \(Oy\) và cách đều hai mặt phẳng: \(\left( P \right):x + y - z + 1 = 0\) và \(\left( Q \right):x - y + z - 5 = 0\) là:
Tính nguyên hàm \(\int {\dfrac{{dx}}{{\sqrt x + 1}}} \) ta được :
Trong không gian với hệ toạ độ \(Oxyz\), cho các điểm: A(-1,3,5), B(-4,3,2), C(0,2,1). Tìm tọa độ điểm \(I\) tâm đường tròn ngoại tiếp tam giác \(ABC\)
Phương trình mặt cầu tâm \(I\left( {2;4;6} \right)\) nào sau đây tiếp xúc với trục Ox:
Trong không gian\(Oxyz\), cho 2 điểm \(B(1;2; - 3)\),\(C(7;4; - 2)\). Nếu \(E\) là điểm thỏa mãn đẳng thức \(\overrightarrow {CE} = 2\overrightarrow {EB} \) thì tọa độ điểm \(E\) là
Đường tròn giao tuyến của \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 16\) khi cắt bởi mặt phẳng (Oxy) có chu vi bằng:
Đặt \(F(x) = \int\limits_1^x {t\,dt} \). Khi đó F’(x) là hàm số nào dưới đây ?
Tính tích phân \(\int\limits_a^{\dfrac{\pi }{2} - a} {{\sin }^2}x\,dx;\,\,\dfrac{\pi }{2} > a > 0 \)
Biết \(\int\limits_2^4 {\dfrac{1}{{2x + 1}}\,dx = m\ln 5 + n\ln 3\,\left( {m,n \in R} \right)} \). Tính P = m – n .
Trong không gian với hệ trục tọa độ \(Oxyz\)cho ba điểm \(A(1;2; - 1)\), \(B(2; - 1;3)\),\(C( - 2;3;3)\). Tìm tọa độ điểm\(D\) là chân đường phân giác trong góc \(A\) của tam giác\(ABC\)
Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường \(y = \tan x,\,\,y = 0,\,\,x = \dfrac{\pi }{3}\) quanh Ox là: