Cho hai tích phân $I = \int\limits_0^2 {{x^3}dx} $, $J = \int\limits_0^2 {xdx} $. Tìm mối quan hệ giữa $I$ và $J$
lượt xem
Kết quả của tích phân \(\int\limits_{ - 1}^0 {\left( {x + 1 + \dfrac{2}{{x - 1}}} \right)dx} \) được viết dưới dạng \(a + b\ln 2\) với \(a,b \in Q\). Khi đó \(a + b\) có giá trị là:
lượt xem
Tính \(I = \int {\ln \left( {x + \sqrt {{x^2} + 1} } \right)dx} \) ta được:
lượt xem
Cho hàm số $f\left( x \right) = \dfrac{1}{{{{\sin }^2}x}}$. Nếu $F\left( x \right)$ là một nguyên hàm của hàm số $f\left( x \right)$ và đồ thị hàm số $y = F\left( x \right)$ đi qua $M\left( {\dfrac{\pi }{3};0} \right)$ thì là:
lượt xem
Cho hàm số $y = f(x)$ thỏa mãn $f'\left( x \right) = \left( {x + 1} \right){e^x}$ và $\int {f'(x)} dx = (ax + b){e^x} + c$ với $a, b, c$ là các hằng số. Chọn mệnh đề đúng:
lượt xem
Cho nguyên hàm \(I = \int {\dfrac{{6{\mathop{\rm tanx}\nolimits} }}{{{{\cos }^2}x\sqrt {3\tan x + 1} }}dx} \) . Giả sử đặt \(u = \sqrt {3\tan x + 1} \) thì ta được:
lượt xem
lượt xem
Chọn mệnh đề đúng:
lượt xem
Hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ 1;\ 3 \right]\) , trục $Ox$ và hai đường thẳng \(x=1,\ \ x=3\) có diện tích là:
lượt xem
Tìm họ nguyên hàm của hàm số \(f\left( x \right)={{5}^{2x}}.\)
lượt xem
Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sqrt {8 + \cos x} dx} \). Đặt \(u = 8 + \cos x\) thì kết quả nào sau đây là đúng?
lượt xem
Diện tích hình phẳng giới hạn bởi các đồ thị hàm số $y = {x^3} - x;y = 2x$ và các đường thẳng $x = - 1;x = 1$ được xác định bởi công thức:
lượt xem
Hàm số \(y = f\left( x \right)\) có nguyên hàm trên $\left( {a;b} \right)$ đồng thời thỏa mãn \(f\left( a \right) = f\left( b \right)\). Lựa chọn phương án đúng:
lượt xem
Trong các tích phân sau, tích phân nào có giá trị khác \(2\)?
lượt xem
Tính tích phân \(I = \int\limits_{\ln 2}^{\ln 5} {\dfrac{{{e^{2x}}}}{{\sqrt {{e^x} - 1} }}dx} \) bằng phương pháp đổi biến số \(u = \sqrt {{e^x} - 1} \). Khẳng định nào sau đây là khẳng định đúng?
lượt xem
Cho hàm số $f(x)$ có đạo hàm trên $\left[ {1;4} \right]$ và $f(1) = 2,{\mkern 1mu} {\mkern 1mu} f(4) = 10$. Giá trị của $I = \int\limits_1^4 {f'(x)dx} $ là
lượt xem
Hàm số \(F\left( x \right)\) được gọi là nguyên hàm của hàm số \(f\left( x \right)\) nếu:
lượt xem
Hàm số nào sau đây là một nguyên hàm của hàm số \(y=\cos x\) ?
lượt xem
Thể tích khối tròn xoay sinh ra bởi phép quay xung quanh $Ox$ của hình giới hạn bởi trục $Ox$ và parabol $\left( P \right):y = {x^2} - ax\,\,\,\,\left( {a > 0} \right)$ bằng $V = 2.$ Khẳng định nào dưới đây đúng ?
lượt xem
Biết \(\int\limits_{0}^{1}{\frac{\text{d}x}{\sqrt{x+1}+\sqrt{x}}}=\frac{2}{3}\left( \sqrt{a}-b \right)\) với \(a,\,\,b\) là các số nguyên dương. Tính \(T=a+b.\)
lượt xem
Kết quả của tích phân \(\int\limits_{ - 1}^0 {\left( {x + 1 + \dfrac{2}{{x - 1}}} \right)dx} \) được viết dưới dạng \(a + b\ln 2\) với \(a,b \in Q\). Khi đó \(a + b\) có giá trị là:
lượt xem
Họ nguyên hàm của hàm số $f\left( x \right) = {x^2}\sqrt {4 + {x^3}} $ là:
lượt xem
lượt xem
Cho hàm số \(f\left( x \right)=\frac{a}{{{\left( x+1 \right)}^{3}}}+bx{{e}^{x}}\). Tìm a và b biết rằng \(f'\left( 0 \right)=-22\) và \(\int\limits_{0}^{1}{f\left( x \right)dx}=5\).
lượt xem
Biết $\int {f\left( x \right){\mkern 1mu} {\rm{d}}x = 2x\ln \left( {3x - 1} \right) + C} $ với $x \in \left( {\dfrac{1}{9}; + \infty } \right)$. Tìm khẳng định đúng trong các khẳng định sau.
lượt xem
Cho hàm số \(y = f(x)\)thỏa mãn hệ thức \(\int {f\left( x \right)\sin xdx} = - f(x).\cos x + \int {{\pi ^x}\cos xdx}. \) Hỏi \(y = f\left( x \right)\) là hàm số nào trong các hàm số sau:
lượt xem
lượt xem
Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(\int\limits_0^1 {\left( {x + 1} \right)f'\left( x \right)dx} = 10\) và \(2f\left( 1 \right) - f\left( 0 \right) = 2\). Tính \(I = \int\limits_0^1 {f\left( x \right)dx} \)
lượt xem
Cho hai hàm số \(f,\,\,g\) liên tục trên đoạn $\left[ {a;b} \right]$ và số thực $k$ tùy ý. Trong các khẳng định sau, khẳng định nào sai ?
lượt xem
Cho hàm số \(f(x)\) liên tục trong đoạn \(\left[ 1;e \right]\), biết \(\int\limits_{1}^{e}{\frac{f(x)}{x}dx}=1,\,\,f(e)=2\). Tích phân \(\int\limits_{1}^{e}{f'(x)\ln xdx}=?\)
lượt xem
Tích phân \(I = \int\limits_1^2 {{x^5}} dx\) có giá trị là:
lượt xem
Biết \(\int\limits_{0}^{4}{x\ln ({{x}^{2}}+9)dx=a\ln 5+b\ln 3+c}\) trong đó a, b, c là các số nguyên. Giá trị biểu thức \(T=a+b+c\) là
lượt xem
Cho \(\int\limits_{1}^{2}{\frac{\text{d}x}{{{x}^{5}}+{{x}^{3}}}}=a.\ln 5+b.\ln 2+c\) với \(a,\,\,b,\,\,c\) là các số hữu tỉ. Giá trị của \(a+2b+4c\) bằng
lượt xem
Họ nguyên hàm của hàm số $f\left( x \right) = {x^2}\sqrt {4 + {x^3}} $ là:
lượt xem
Nếu \(t = {x^2}\) thì:
lượt xem
lượt xem
Hàm số $y = \sin x$ là một nguyên hàm của hàm số nào trong các hàm số sau?
lượt xem
Cho hàm số \(y = f(x)\)thỏa mãn hệ thức \(\int {f\left( x \right)\sin xdx} = - f(x).\cos x + \int {{\pi ^x}\cos xdx}. \) Hỏi \(y = f\left( x \right)\) là hàm số nào trong các hàm số sau:
lượt xem
Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Chọn mệnh đề sai?
lượt xem
Tích phân \(\int\limits_{1}^{2}{{{(x+3)}^{2}}dx}\) bằng
lượt xem
lượt xem
Trong các khẳng định sau, khẳng định nào sai ?
lượt xem
Trong các tích phân sau, tích phân nào có giá trị bằng \(2\)?
lượt xem
Biết rằng \(F\left( x \right) = {e^{2x}}\left( {a\cos 3x + b\sin 3x} \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {e^{2x}}\cos 3x\), trong đó a, b, c là các hằng số. Giá trị của tổng \(S = a + b\) thỏa mãn:
lượt xem
Tích phân \(\int\limits_{0}^{1}{{{e}^{-x}}}\,\text{d}x\) bằng
lượt xem
Cho \(A = \int {{x^5}\sqrt {1 + {x^2}} dx = a} {t^7} + b{t^5} + c{t^3} + C\) , với \(t = \sqrt {1 + {x^2}} \). Tính \(A = a - b - c\)
lượt xem
Biết $F\left( x \right) = \left( {ax + b} \right).{e^x}$ là nguyên hàm của hàm số $y = \left( {2x + 3} \right).{e^x}$. Khi đó $b - a$ là
lượt xem
Cho $I = \int\limits_0^1 {\left( {2x - {m^2}} \right)dx} $. Có bao nhiêu giá trị nguyên dương m để $I + 3 \ge 0$?
lượt xem
Nếu đặt $\left\{ \begin{array}{l}u = \ln \left( {x + 2} \right)\\{\rm{d}}v = x\,{\rm{d}}x\end{array} \right.$ thì tích phân $I = \int\limits_0^1 {x.\ln \left( {x + 2} \right){\rm{d}}x} $ trở thành
lượt xem
Tính \(I = \int {\cos \sqrt x dx} \) ta được:
lượt xem
