Cho dãy số \(({u_n})\) với \({u_n} = (n - 1)\sqrt {\dfrac{{2n + 2}}{{{n^4} + {n^2} - 1}}} \). Chọn kết quả đúng của \(\lim {u_n}\)là
lượt xem
Cho hai đường thẳng chéo nhau a và b. Lấy A,B thuộc a và C,D thuộc b. Khẳng định nào sau đây đúng khi nói về hai đường thẳng AD và BC?
lượt xem
Trong các mệnh đề sau, mệnh đề nào sai?
lượt xem
Cho cấp số cộng \(({u_n})\)có \({u_2} + {u_3} = 20,{u_5} + {u_7} = - 29\). Tìm \({u_1},d\)?
lượt xem
Cho dãy số có các số hạng đầu là :\( - 2;0;2;4;6;....\)Số hạng tổng quát của dãy số này có dạng ?
lượt xem
lượt xem
Trong mp Oxy cho (C): \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 9\). Phép tịnh tiến theo \(\vec v\left( {3; - 2} \right)\) biến (C) thành đường tròn nào?
lượt xem
Trong mặt phẳng Oxy, tìm ảnh của đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 5} \right)^2} = 5\) qua phép quay \({Q_{\left( {O,{{180}^0}} \right)}}\)
lượt xem
Giá trị của \(\lim \dfrac{{4{n^2} + 3n + 1}}{{{{(3n - 1)}^2}}}\) bằng
lượt xem
Tính \(\mathop {\lim }\limits_{x \to + \infty } (x + 2)\sqrt {\dfrac{{x - 1}}{{{x^4} + {x^2} + 1}}} \)
lượt xem
Cho \(\lim \,{u_n} = L\). Chọn mệnh đề đúng:
lượt xem
Giá trị của \(\lim \dfrac{{1 - {n^2}}}{n}\) bằng:
lượt xem
lượt xem
lượt xem
Cho tứ diện \(ABCD\) có \(AB = x\,\,\left( {x > 0} \right)\), các cạnh còn lại bằng nhau và bằng \(4\). Mặt phẳng \(\left( P \right)\) chứa cạnh \(AB\) và vuông góc với cạnh \(CD\) tại \(I.\) Diện tích tam giác \(IAB\) lớn nhất bằng:
lượt xem
Cho \(a,\,\,b\) là các số nguyên và \(\mathop {\lim }\limits_{x \to 1} \dfrac{{a{x^2} + bx - 5}}{{x - 1}} = 20\). Tính \(P = {a^2} + {b^2} - a - b\).
lượt xem
lượt xem
lượt xem
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và thỏa mãn \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 7\) thì \(\mathop {\lim }\limits_{x \to 3} \left[ {10 - 2f\left( x \right)} \right]\) bằng bao nhiêu.
lượt xem
Cho giới hạn \(\mathop {\lim }\limits_{x \to - 2} \left( {{x^2} - 2ax + 3 + {a^2}} \right) = 3\) thì \(a\) bằng bao nhiêu.
lượt xem
Cho tứ diện \(ABCD\) có \(AC = 6a\), \(BD = 8a\). Gọi \(M,\,\,N\) lần lượt là trung điểm của \(AD,\,\,BC\). Biết \(AC \bot BD\). Tính độ dài đoạn thẳng \(MN\).
lượt xem
Số điểm gián đoạn của hàm số \(f\left( x \right) = \dfrac{{\sin x\,}}{{{x^3} + 3{x^2} - 2x - 2}}\)?
lượt xem
Cho \(C = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^2} - mx + m - 1}}{{{x^2} - 1}}\). Tìm tất cả các giá trị thực của \(m\) để \(C = 2\).
lượt xem
Cho hai số thực \(x,\,\,y\) thỏa mãn \(6,\,\,x,\,\, - 2,\,\,y\) lập thành cấp số cộng. Tìm \(x,\,\,y\).
lượt xem
Tính \(\lim \left( {\sqrt {{n^2} + n} - n} \right)\).
lượt xem
Cho tứ diện đều \(ABCD\). Số đo góc giữa hai đường thẳng \(AB\) và \(CD\) bằng:
lượt xem
Tính \(\lim \dfrac{{{{2018}^n} + {2^{2018}}}}{{{{2019}^n}}}\).
lượt xem
Cho cấp số nhân lùi vô hạn \(1;\,\, - \dfrac{1}{2};\,\,\dfrac{1}{4};\,\, - \dfrac{1}{8};\,...;{\left( { - \dfrac{1}{2}} \right)^n},\,\,...\) có tổng là một phân số tối giản \(\dfrac{m}{n}\). Tính \(m + 2n\)
lượt xem
Cho cấp số nhân \(\left( {{u_n}} \right)\) biết \({u_1} = 3,\,\,{u_2} = - 6\). Khi đó \({u_5}\) bằng:
lượt xem
Mệnh đề nào dưới đây sai?
lượt xem
Trong các dãy số sau, dãy số nào có giới hạn hữu hạn?
lượt xem
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,\,\,N\) lần lượt là trung điểm của \(AB,\,\,AD\) và \(G\) là trọng tâm tam giác \(SBD\). Mặt phẳng \(\left( {MNG} \right)\) cắt \(SC\) tại điểm \(H\). Tính \(\dfrac{{SH}}{{SC}}\).
lượt xem
Tính \(\lim \dfrac{{\left( {2{n^2} + 1} \right)n}}{{3 + n - 3{n^3}}}\).
lượt xem
Khẳng định nào sai trong các khẳng định sau:
lượt xem
Cho \(a\) là một số thực khác 0. Tính \(\mathop {\lim }\limits_{x \to a} \dfrac{{{x^4} - {a^4}}}{{x - a}}\).
lượt xem
Trong các dãy số \(\left( {{u_n}} \right)\) sau đấy, dãy số nào không là cấp số cộng?
lượt xem
Cho hình lập phương \(ABCD.EFGH\) có cạnh \(AB = a\). Khi đó \(\overrightarrow {AB} .\overrightarrow {EG} \) bằng:
lượt xem
Cho \(a,\,\,b\) là hai số thực khác 0. Nếu \(\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} + ax + b}}{{x - 2}} = 6\) thì \(a + b\) bằng:
lượt xem
Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Kết quả nào sau đây là đúng?
lượt xem
Chọn câu đúng:
lượt xem
Cho hàm số \(f(x) = \dfrac{{{x^2} + 1}}{{{x^2}-5x + 6}}\) . Hàm số liên tục trên khoảng nào sau đây?
lượt xem
Cho a,b,c theo thứ tự lập thành cấp số cộng, đẳng thức nào sau đây là đúng ?
lượt xem
Cho cấp số nhân \({u_n} = \dfrac{1}{{{2^n}}},\forall n \ge 1\). Khi đó:
lượt xem
Tính \(\mathop {\lim }\limits_{x \to {3^ + }} \dfrac{{\left| {x - 3} \right|}}{{3x - 9}}\) bằng?
lượt xem
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\). Khẳng định nào sau đây là đúng?
lượt xem
Tứ diện ABCD, gọi G là trọng tâm tam giác ACD, M thuộc đoạn thẳng BC sao cho CM = 2MB. Chọn mệnh đề đúng trong các mệnh đề sau?
lượt xem
Xét tính tăng , giảm và bị chặn của dãy số \(({u_n})\) biết \({u_n} = \dfrac{{2n - 13}}{{3n - 2}}\)
lượt xem
Cho dãy số \( - 1;x;0,64\). Chọn \(x\) để dãy số đã cho theo thứ tự lập thành cấp số nhân
lượt xem
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 2} \dfrac{{2{x^2} - 5x + 2}}{{{x^3} - 8}}\)
lượt xem
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^4} - 5{x^2} + 4}}{{{x^3} - 8}}\)
lượt xem