Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,\,\,N\) lần lượt là trung điểm của \(AB,\,\,AD\) và \(G\) là trọng tâm tam giác \(SBD\). Mặt phẳng \(\left( {MNG} \right)\) cắt \(SC\) tại điểm \(H\). Tính \(\dfrac{{SH}}{{SC}}\).
A. \(\dfrac{2}{3}\)
B. \(\dfrac{2}{5}\)
C. \(\dfrac{1}{4}\)
D. \(\dfrac{1}{3}\)
Lời giải của giáo viên
ToanVN.com
Gọi \(O = AC \cap BD \Rightarrow O\) là trung điểm của \(AC,\,\,BD\).
\( \Rightarrow SO\) là đường trung tuyến của \(\Delta SBD \Rightarrow G \in SO \Rightarrow G \in \left( {SAC} \right)\).
Chọn \(SC \subset \left( {SAC} \right)\).
Xét \(\left( {GMN} \right)\) và \(\left( {SAC} \right)\) có \(G\) chung.
Trong \(\left( {ABCD} \right)\) gọi \(E = MN \cap AC\) ta có: \(\left\{ \begin{array}{l}E \in MN \subset \left( {GMN} \right)\\E \in AC \subset \left( {SAC} \right)\end{array} \right.\) \( \Rightarrow E \in \left( {GMN} \right) \cap \left( {SAC} \right)\).
\( \Rightarrow \left( {GMN} \right) \cap \left( {SAC} \right) = GE\).
Trong \(\left( {SAC} \right)\) gọi \(H = GE \cap SC\) ta có \(\left\{ \begin{array}{l}H \in SC\\H \in GE \subset \left( {GMN} \right)\end{array} \right. \Rightarrow H = SC \cap \left( {GMN} \right)\).
Ta có \(MN\) là đường trung bình của \(\Delta ABD \Rightarrow MN//BD\).
Xét tam giác \(ABC\) có: \(M\) là trung điểm của \(AB,\,\,ME//BO\) nên \(E\) là trung điểm của \(AO\) (định lí đường trung bình của tam giác) \( \Rightarrow \dfrac{{EO}}{{EC}} = \dfrac{1}{3}\).
Áp dụng định lí Menelaus trong tam giác \(SOC\), cát tuyến \(EGH\) ta có \(\dfrac{{GS}}{{GO}}.\dfrac{{EO}}{{EC}}.\dfrac{{HC}}{{HS}} = 1\)
\( \Rightarrow 2.\dfrac{1}{3}.\dfrac{{HC}}{{HS}} = 1 \Rightarrow \dfrac{{HC}}{{HS}} = \dfrac{3}{2}\) \( \Rightarrow \dfrac{{SH}}{{SC}} = \dfrac{2}{5}\).
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong mp Oxy cho (C): \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 9\). Phép tịnh tiến theo \(\vec v\left( {3; - 2} \right)\) biến (C) thành đường tròn nào?
Số điểm gián đoạn của hàm số \(f\left( x \right) = \dfrac{{\sin x\,}}{{{x^3} + 3{x^2} - 2x - 2}}\)?
Cho cấp số nhân lùi vô hạn \(1;\,\, - \dfrac{1}{2};\,\,\dfrac{1}{4};\,\, - \dfrac{1}{8};\,...;{\left( { - \dfrac{1}{2}} \right)^n},\,\,...\) có tổng là một phân số tối giản \(\dfrac{m}{n}\). Tính \(m + 2n\)
\(\mathop {\lim }\limits_{x \to - 2} \dfrac{{4{x^3} - 1}}{{3{x^2} + x + 2}}\) bằng
Giá trị của \(\lim (\sqrt {{n^2} + 2n} - \sqrt[3]{{{n^3} + 2{n^2}}})\) bằng
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và thỏa mãn \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 7\) thì \(\mathop {\lim }\limits_{x \to 3} \left[ {10 - 2f\left( x \right)} \right]\) bằng bao nhiêu.
Trong các dãy số sau, dãy số nào có giới hạn hữu hạn?
Cho dãy số \(({u_n})\) với \({u_n} = (n - 1)\sqrt {\dfrac{{2n + 2}}{{{n^4} + {n^2} - 1}}} \). Chọn kết quả đúng của \(\lim {u_n}\)là
Tính \(\lim \left( {\sqrt {{n^2} + n} - n} \right)\).
Tính \(\mathop {\lim }\limits_{x \to + \infty } (x + 2)\sqrt {\dfrac{{x - 1}}{{{x^4} + {x^2} + 1}}} \)
Cho hai đường thẳng chéo nhau a và b. Lấy A,B thuộc a và C,D thuộc b. Khẳng định nào sau đây đúng khi nói về hai đường thẳng AD và BC?
Cho cấp số nhân \(\left( {{u_n}} \right)\) biết \({u_1} = 3,\,\,{u_2} = - 6\). Khi đó \({u_5}\) bằng:
