Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) thỏa mãn \(\mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - 16}}{{x - 2}} = 12.\) Giới hạn \(\mathop {\lim }\limits_{x \to 2} \dfrac{{\sqrt {2f\left( x \right) - 16} - 4}}{{{x^2} + x - 6}}\) bằng
A. \(\dfrac{1}{5}\)
B. \(\dfrac{3}{5}\)
C. \(20\)
D. \( - \dfrac{1}{{20}}\)
Lời giải của giáo viên
ToanVN.com
Đặt \(g\left( x \right) = \dfrac{{f\left( x \right) - 16}}{{x - 2}}\) ta có: \(f\left( x \right) = \left( {x - 2} \right)g\left( x \right) + 16\).
\( \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \left[ {\left( {x - 2} \right)g\left( x \right) + 16} \right] = 16\).
Ta có:
\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to 2} \dfrac{{\sqrt {2f\left( x \right) - 16} - 4}}{{{x^2} + x - 6}}\\ = \mathop {\lim }\limits_{x \to 2} \dfrac{{2f\left( x \right) - 16 - 16}}{{\left( {{x^2} + x - 6} \right)\left( {\sqrt {2f\left( x \right) - 16} + 4} \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \dfrac{{2f\left( x \right) - 32}}{{\left( {x - 2} \right)\left( {x + 3} \right)\left( {\sqrt {2f\left( x \right) - 16} + 4} \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \dfrac{{f\left( x \right) - 16}}{{x - 2}}.\mathop {\lim }\limits_{x \to 2} \dfrac{2}{{\left( {x + 3} \right)\left( {\sqrt {2f\left( x \right) - 16} + 4} \right)}}\\ = 12.\dfrac{2}{{5.\left( {\sqrt {2.16 - 16} + 4} \right)}} = \dfrac{3}{5}\end{array}\)
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong mp Oxy cho (C): \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 9\). Phép tịnh tiến theo \(\vec v\left( {3; - 2} \right)\) biến (C) thành đường tròn nào?
Số điểm gián đoạn của hàm số \(f\left( x \right) = \dfrac{{\sin x\,}}{{{x^3} + 3{x^2} - 2x - 2}}\)?
Cho cấp số nhân lùi vô hạn \(1;\,\, - \dfrac{1}{2};\,\,\dfrac{1}{4};\,\, - \dfrac{1}{8};\,...;{\left( { - \dfrac{1}{2}} \right)^n},\,\,...\) có tổng là một phân số tối giản \(\dfrac{m}{n}\). Tính \(m + 2n\)
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và thỏa mãn \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 7\) thì \(\mathop {\lim }\limits_{x \to 3} \left[ {10 - 2f\left( x \right)} \right]\) bằng bao nhiêu.
\(\mathop {\lim }\limits_{x \to - 2} \dfrac{{4{x^3} - 1}}{{3{x^2} + x + 2}}\) bằng
Giá trị của \(\lim (\sqrt {{n^2} + 2n} - \sqrt[3]{{{n^3} + 2{n^2}}})\) bằng
Cho dãy số \(({u_n})\) với \({u_n} = (n - 1)\sqrt {\dfrac{{2n + 2}}{{{n^4} + {n^2} - 1}}} \). Chọn kết quả đúng của \(\lim {u_n}\)là
Tính \(\mathop {\lim }\limits_{x \to + \infty } (x + 2)\sqrt {\dfrac{{x - 1}}{{{x^4} + {x^2} + 1}}} \)
Tính \(\lim \left( {\sqrt {{n^2} + n} - n} \right)\).
Trong các dãy số sau, dãy số nào có giới hạn hữu hạn?
Cho tứ diện đều \(ABCD\). Số đo góc giữa hai đường thẳng \(AB\) và \(CD\) bằng:
Cho hai đường thẳng chéo nhau a và b. Lấy A,B thuộc a và C,D thuộc b. Khẳng định nào sau đây đúng khi nói về hai đường thẳng AD và BC?
