Lời giải của giáo viên
ToanVN.com
Gọi \(M\) là trung điểm của \(CD\).
Vì tứ diện \(ABCD\) đều nên các tam giác \(ACD,\,\,BCD\) là các tam giác đều.
\( \Rightarrow \left\{ \begin{array}{l}AM \bot CD\\BM \bot CD\end{array} \right. \Rightarrow CD \bot \left( {ABM} \right)\). Mà \(AB \subset \left( {ABM} \right)\) nên \(AB \bot CD\).
Vậy \(\angle \left( {AB;CD} \right) = {90^0}\).
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Số điểm gián đoạn của hàm số \(f\left( x \right) = \dfrac{{\sin x\,}}{{{x^3} + 3{x^2} - 2x - 2}}\)?
Trong mp Oxy cho (C): \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 9\). Phép tịnh tiến theo \(\vec v\left( {3; - 2} \right)\) biến (C) thành đường tròn nào?
Cho cấp số nhân lùi vô hạn \(1;\,\, - \dfrac{1}{2};\,\,\dfrac{1}{4};\,\, - \dfrac{1}{8};\,...;{\left( { - \dfrac{1}{2}} \right)^n},\,\,...\) có tổng là một phân số tối giản \(\dfrac{m}{n}\). Tính \(m + 2n\)
\(\mathop {\lim }\limits_{x \to - 2} \dfrac{{4{x^3} - 1}}{{3{x^2} + x + 2}}\) bằng
Tính \(\mathop {\lim }\limits_{x \to + \infty } (x + 2)\sqrt {\dfrac{{x - 1}}{{{x^4} + {x^2} + 1}}} \)
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và thỏa mãn \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 7\) thì \(\mathop {\lim }\limits_{x \to 3} \left[ {10 - 2f\left( x \right)} \right]\) bằng bao nhiêu.
Tính \(\lim \left( {\sqrt {{n^2} + n} - n} \right)\).
Cho dãy số \(({u_n})\) với \({u_n} = (n - 1)\sqrt {\dfrac{{2n + 2}}{{{n^4} + {n^2} - 1}}} \). Chọn kết quả đúng của \(\lim {u_n}\)là
Trong các dãy số sau, dãy số nào có giới hạn hữu hạn?
Giá trị của \(\lim (\sqrt {{n^2} + 2n} - \sqrt[3]{{{n^3} + 2{n^2}}})\) bằng
Giá trị của \(\lim \dfrac{{4{n^2} + 3n + 1}}{{{{(3n - 1)}^2}}}\) bằng
Cho cấp số nhân \(\left( {{u_n}} \right)\) biết \({u_1} = 3,\,\,{u_2} = - 6\). Khi đó \({u_5}\) bằng:
