Lời giải của giáo viên
ToanVN.com
Ta có:
\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to 1} \dfrac{{a{x^2} + bx - 5}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{a\left( {{x^2} - 1} \right) + b\left( {x - 1} \right) + a + b - 5}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \left[ {a\left( {x + 1} \right) + b + \dfrac{{a + b - 5}}{{x - 1}}} \right]\\ = \mathop {\lim }\limits_{x \to 1} \left[ {a\left( {x + 1} \right) + b} \right] + \mathop {\lim }\limits_{x \to 1} \dfrac{{a + b - 5}}{{x - 1}}\\ = 2a + b + \mathop {\lim }\limits_{x \to 1} \dfrac{{a + b - 5}}{{x - 1}}\end{array}\)
Theo bài ra ta có:
\(\mathop {\lim }\limits_{x \to 1} \dfrac{{a{x^2} + bx - 5}}{{x - 1}} = 20 \Leftrightarrow \left\{ \begin{array}{l}2a + b = 20\\a + b - 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 15\\b = - 10\end{array} \right.\).
Vậy \(P = {a^2} + {b^2} - a - b = {15^2} + {\left( { - 10} \right)^2} - 15 - \left( { - 10} \right) = 320\).
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong mp Oxy cho (C): \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 9\). Phép tịnh tiến theo \(\vec v\left( {3; - 2} \right)\) biến (C) thành đường tròn nào?
Số điểm gián đoạn của hàm số \(f\left( x \right) = \dfrac{{\sin x\,}}{{{x^3} + 3{x^2} - 2x - 2}}\)?
Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) và thỏa mãn \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 7\) thì \(\mathop {\lim }\limits_{x \to 3} \left[ {10 - 2f\left( x \right)} \right]\) bằng bao nhiêu.
\(\mathop {\lim }\limits_{x \to - 2} \dfrac{{4{x^3} - 1}}{{3{x^2} + x + 2}}\) bằng
Giá trị của \(\lim (\sqrt {{n^2} + 2n} - \sqrt[3]{{{n^3} + 2{n^2}}})\) bằng
Cho dãy số \(({u_n})\) với \({u_n} = (n - 1)\sqrt {\dfrac{{2n + 2}}{{{n^4} + {n^2} - 1}}} \). Chọn kết quả đúng của \(\lim {u_n}\)là
Cho cấp số nhân lùi vô hạn \(1;\,\, - \dfrac{1}{2};\,\,\dfrac{1}{4};\,\, - \dfrac{1}{8};\,...;{\left( { - \dfrac{1}{2}} \right)^n},\,\,...\) có tổng là một phân số tối giản \(\dfrac{m}{n}\). Tính \(m + 2n\)
Trong các dãy số sau, dãy số nào có giới hạn hữu hạn?
Cho hai đường thẳng chéo nhau a và b. Lấy A,B thuộc a và C,D thuộc b. Khẳng định nào sau đây đúng khi nói về hai đường thẳng AD và BC?
Tính \(\mathop {\lim }\limits_{x \to + \infty } (x + 2)\sqrt {\dfrac{{x - 1}}{{{x^4} + {x^2} + 1}}} \)
Tính \(\lim \left( {\sqrt {{n^2} + n} - n} \right)\).
Trong các dãy số \(\left( {{u_n}} \right)\) sau đấy, dãy số nào không là cấp số cộng?
