Đề thi HK2 môn Toán 11 năm 2021 - Trường THPT Hoàng Hoa Thám

Đề thi HK2 môn Toán 11 năm 2021 - Trường THPT Hoàng Hoa Thám

  • Hocon247

  • 40 câu hỏi

  • 60 phút

  • 31 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 263802

Giả sử \(M\) là điểm có hoành độ \({x_0} = 1\) thuộc đồ thị hàm số \(\left( C \right)\) của hàm số \(y = {x^3} - 6{x^2} + 1\). Khẳng định nào dưới đây đúng?

Xem đáp án

Ta có: \(M\left( {1; - 4} \right)\), \(y' = 3{x^2} - 12x\)\( \Rightarrow y'\left( 1 \right) = {3.1^2} - 12.1 =  - 9\) .

Tiếp tuyến của đồ thị hàm số tại \(M\left( {1; - 4} \right)\) có phương trình:

\(y = y'\left( 1 \right)\left( {x - 1} \right) - 4\)\( =  - 9\left( {x - 1} \right) - 4\)  hay \(y =  - 9x + 5\).

+ Hệ số góc \(k =  - 9 < 0\) nên A sai.

+ Góc tạo bởi tiếp tuyến với \(Ox\) thỏa mãn \(\tan \alpha  =  - 9 \Leftrightarrow \alpha  \approx {96^0}20'\) nên B sai.

+ Đáp án C sai.

+ \(\left( d \right):x - 9y = 0\) \( \Leftrightarrow y = \frac{1}{9}x\) có hệ số góc \(k = \frac{1}{9}\).

Dễ thấy \(\frac{1}{9}.\left( { - 9} \right) =  - 1\) nên tiếp tuyến vuông góc với \(\left( d \right)\).

Câu 2: Trắc nghiệm ID: 263803

Với \(a\) và \(b\) là hai đường thẳng chéo nhau tùy ý, mệnh đề nào sau đây sai?

Xem đáp án

Đáp án A: Giả sử \(a,b\) chéo nhau tùy ý và tồn tại mặt phẳng \(\left( P \right)\) chứa \(b\) và \(a \bot \left( P \right)\).

Khi đó \(a \bot b\). Diều này chưa chắc đúng do giả thiết chưa cho \(a \bot b\) nên A sai.

Câu 3: Trắc nghiệm ID: 263804

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {x + 3}  - 2}}{{{x^2} - 1}},x > 1\\ax + 2,\,\,\,\,\,\,\,\,\,\,\,x \le 1\end{array} \right.\). Giá trị của \(a\) để hàm số liên tục tại \(x = 1\) là

Xem đáp án

Ta có: \(f\left( 1 \right) = a + 2\).

+) \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = a + 2\).

+) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {x + 3}  - 2}}{{{x^2} - 1}}\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x + 3 - 4}}{{\left( {{x^2} - 1} \right)\left( {\sqrt {x + 3}  + 2} \right)}}\) \( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 1}}{{\left( {{x^2} - 1} \right)\left( {\sqrt {x + 3}  + 2} \right)}}\) \( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{\left( {x + 1} \right)\left( {\sqrt {x + 3}  + 2} \right)}}\) \( = \frac{1}{{\left( {1 + 1} \right)\left( {\sqrt {1 + 3}  + 2} \right)}} = \frac{1}{8}\)

\( \Rightarrow \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \frac{1}{8}\)

Hàm số liên tục tại \(x = 1\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\)\( \Leftrightarrow a + 2 = \frac{1}{8}\) \( \Leftrightarrow a =  - \frac{{15}}{8}\).

Câu 4: Trắc nghiệm ID: 263805

Cho hình chóp \(S.ABC,D\) là trung điểm của đoạn \(SA.\) Gọi \({h_1};{h_2}\) lần lượt là khoảng cách từ \(S\) và \(D\) đến mặt phẳng \(\left( {ABC} \right).\) Tỉ số \(\frac{{{h_1}}}{{{h_2}}}\) bằng

Xem đáp án

Ta có đường thẳng \(SD\) cắt mặt phẳng \(\left( {ABC} \right)\) tại \(A\) nên \(\frac{{d\left( {S;\left( {ABC} \right)} \right)}}{{d\left( {D;\left( {ABC} \right)} \right)}} = \frac{{SA}}{{DA}} = 2\)

Hay \(\frac{{{h_1}}}{{{h_2}}} = 2.\)

Câu 5: Trắc nghiệm ID: 263806

Hình chóp đều \(S.ABCD\) có \(SA = AB = a\). Cosin góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) bằng

 

Xem đáp án

Gọi \(M\) là trung điểm của \(SA\).

Do \(S.ABCD\) đều nên \(SA = SB = SC = SD\). Mà \(SA = AB = a\) nên các tam giác \(SAB,SAD\) là tam giác đều.

Khi đó \(BM \bot SA,DM \bot SA\).

Ta có: \(\left\{ \begin{array}{l}\left( {SAB} \right) \cap \left( {SAD} \right) = SA\\BM \subset \left( {SAB} \right),DM \subset \left( {SAD} \right)\\BM \bot SA,DM \bot SA\end{array} \right.\) \( \Rightarrow \) góc giữa \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) bằng \(\widehat {\left( {BM,DM} \right)} = \alpha \).

Dễ thấy \(BM = DM = \frac{{a\sqrt 3 }}{2},BD = a\sqrt 2 \).

\( \Rightarrow \cos \widehat {BMD} = \frac{{B{M^2} + D{M^2} - B{D^2}}}{{2BM.DM}}\) \( = \frac{{\frac{{3{a^2}}}{4} + \frac{{3{a^2}}}{4} - 2{a^2}}}{{2.\frac{{a\sqrt 3 }}{2}.\frac{{a\sqrt 3 }}{2}}} =  - \frac{1}{3}\).

\( \Rightarrow \cos \alpha  = \frac{1}{3}\)

Câu 6: Trắc nghiệm ID: 263807

Cho hàm số \(f\left( x \right) = \frac{1}{{{x^2} + 1}}\). Tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là

Xem đáp án

TXĐ: \(D = \mathbb{R}\)

Ta có \(f'\left( x \right) = {\left( {\frac{1}{{{x^2} + 1}}} \right)^\prime } =  - \frac{{2x}}{{{{\left( {{x^2} + 1} \right)}^2}}}\)

Xét \(f'\left( x \right) > 0 \Leftrightarrow \frac{{ - 2x}}{{{{\left( {{x^2} + 1} \right)}^2}}} > 0\) \( \Leftrightarrow  - 2x > 0 \Leftrightarrow x < 0\)

Vậy \(S = \left( { - \infty ;0} \right)\)

Câu 7: Trắc nghiệm ID: 263808

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). \(M,N,P,Q\) lần lượt là trung điểm của \(AB,BC,C'D'\) và \(D'A'\). Khoảng cách giữa hai đường thẳng \(MN\) và \(PQ\) bằng

Xem đáp án

Dễ thấy \(MN//AC//A'C'//PQ\).

Gọi \(E,F\) lần lượt là trung điểm \(A'B',AD\).

Khi đó \(MN \bot ME\) (vì \(ME \bot \left( {ABCD} \right)\)).

Mà \(MN \bot MF\) (tính chất trung điểm các cạnh hình vuông).

Do đó \(MN \bot \left( {MEQF} \right) \Rightarrow MN \bot MQ\) nên \(d\left( {MN,PQ} \right) = d\left( {Q,MN} \right) = QM\).

Tam giác \(MEQ\) vuông tại \(E\) có \(ME = a,EQ = \frac{1}{2}B'D' = \frac{{a\sqrt 2 }}{2}\) nên \(QM = \sqrt {M{E^2} + E{Q^2}} \)\( = \sqrt {{a^2} + \frac{{{a^2}}}{2}}  = \frac{{a\sqrt 6 }}{2}\)

Vậy \(d\left( {MN,PQ} \right) = \frac{{a\sqrt 6 }}{2}\).

Câu 8: Trắc nghiệm ID: 263809

Đạo hàm của hàm số \(y = \sin \left( {{x^3}} \right)\) là

Xem đáp án

Ta có \(y' = {\left( {\sin \left( {{x^3}} \right)} \right)^\prime }\)\( = {\left( {{x^3}} \right)^\prime }\cos \left( {{x^3}} \right)\) \( = 3{x^2}\cos \left( {{x^3}} \right)\)  

Câu 9: Trắc nghiệm ID: 263810

Giới hạn \(\lim \frac{{{{12}^n} - {{11}^n}}}{{{4^n} + {{4.12}^n} + 3}}\) bằng

Xem đáp án

Ta có: \(\lim \frac{{{{12}^n} - {{11}^n}}}{{{4^n} + {{4.12}^n} + 3}}\)\( = \lim \frac{{1 - {{\left( {\frac{{11}}{{12}}} \right)}^n}}}{{{{\left( {\frac{1}{3}} \right)}^n} + 4 + \frac{3}{{{{12}^n}}}}}\) \( = \frac{{1 - 0}}{{0 + 4 + 0}} = \frac{1}{4}\).

Câu 10: Trắc nghiệm ID: 263811

Trong không gian cho hai đường thẳng \(a,b\) và mặt phẳng \(\left( P \right).\) Mệnh đề nào sau đây đúng?

Xem đáp án

Đáp án A : Sai vì có thể xảy ra trường hợp \(a,b\) cắt nhau (cùng nằm trong mặt phẳng song song \(\left( P \right)\)) hoặc có thể chéo nhau.

Đáp án B : Đúng.

Đáp án C : Sai vì có thể xảy ra trường hợp \(a,b\) trùng nhau.

Đáp án D : Sai vì có thể xảy ra trường hợp \(b \subset \left( P \right)\).

Câu 11: Trắc nghiệm ID: 263812

Tiếp tuyến của đồ thị  hàm số \(y = {x^3} + 3{x^2}\) tại điểm có hoành độ \({x_0} = 1\) có phương trình là

Xem đáp án

TXĐ: \(D = \mathbb{R}\).

Ta có: \(y' = 3{x^2} + 6x\) \( \Rightarrow y'\left( 1 \right) = {3.1^2} + 6.1 = 9\). Mặt khác có \({y_0} = {1^3} + {3.1^2} = 4\).

Vậy tiếp tuyến của đồ thị  hàm số \(y = {x^3} + 3{x^2}\) tại điểm có hoành độ \({x_0} = 1\) có phương trình là:

\(y = 9\left( {x - 1} \right) + 4\)\( \Leftrightarrow y = 9x - 5\)

Câu 12: Trắc nghiệm ID: 263813

Tìm tham số m để hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{2{x^2} - 7x + 6}}{{x - 2}}{\rm{  khi }}x \ne 2\\2m + 5{\rm{             khi }}x{\rm{ }} = {\rm{ }}2\end{array} \right.\) liên tục tại điểm \(x = 2\).

Xem đáp án

TXĐ: \(D = \mathbb{R}\), \(x = 2 \in D\).

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 7x + 6}}{{x - 2}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {2x - 3} \right)}}{{x - 2}}\\ = \mathop {\lim }\limits_{x \to 2} \left( {2x - 3} \right) = 1\\f\left( 2 \right) = 2m + 5\end{array}\)

Để hàm số liên tục tại \(x = 2\) thì \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\)\( \Leftrightarrow 2m + 5 = 1 \Leftrightarrow m =  - 2\).

Câu 13: Trắc nghiệm ID: 263814

Mệnh đề nào sau đây là mệnh đề không đúng ?

Xem đáp án

Dễ thấy mệnh đề B: Nếu đường thẳng \(d\) vuông góc với hai đường thẳng nằm trong \((\alpha )\) thì \(d \bot (\alpha )\) là mệnh đề sai vì thiếu điều kiện hai đường thẳng cắt nhau.

Câu 14: Trắc nghiệm ID: 263815

Một chất điểm chuyển động có phương trình là \(s = {t^2} + 2t + 3\) (\(t\) tính bằng giây, \(s\) tính bằng mét).  Khi đó vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) giây là

Xem đáp án

Ta có: \(s' = 2t + 2\).

Vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) giây là \(v\left( 5 \right) = s'\left( 5 \right)\) \( = 2.5 + 2 = 12\,\,\left( {m/s} \right)\)

Câu 15: Trắc nghiệm ID: 263816

Cho hình lăng trụ \(ABC.A'B'C'\), \(M\) là trung điểm của \(BB'\). Đặt \(\overrightarrow {CA}  = \overrightarrow a ,\) \(\overrightarrow {CB}  = \overrightarrow b ,\) \(\overrightarrow {AA'}  = \overrightarrow c \). Khẳng định nào sau đây đúng ?

Xem đáp án

Ta có:

\(\begin{array}{l}\overrightarrow {AM}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AB'} } \right)\\\,\,\,\,\,\,\,\,\,\, = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AB}  + \overrightarrow {AA'} } \right)\\\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AA'} \\\,\,\,\,\,\,\,\,\, = \overrightarrow {CB}  - \overrightarrow {CA}  + \frac{1}{2}\overrightarrow {AA'} \\\,\,\,\,\,\,\,\,\, = \overrightarrow b  - \overrightarrow a  + \frac{1}{2}\overrightarrow c \end{array}\)

Câu 16: Trắc nghiệm ID: 263817

Cho tứ diện \(ABCD\) có \(AC = a,\) \(BD = 3a\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AD\) và \(BC.\) Biết \(AC\) vuông góc với\(BD\). Tính  độ dài đoạn thẳng \(MN\) theo \(a.\)

Xem đáp án

Gọi P là trung điểm của AC. Khi đó ta có:

+ NP là đường trung bình của tam giác ABC nên NP = \(\frac{1}{2}\)AC = \(\frac{a}{2}\) và NP // AC.

+ MP là đường trung bình của tam giác ABD nên MP = \(\frac{1}{2}\)BD = \(\frac{{3a}}{2}\) và MP // BD.

Mà \(AC \bot BD\,\,\left( {gt} \right)\) nên \(NP \bot MP \Rightarrow \Delta MNP\) vuông tại P.

Áp dụng định lí Pytago trong tam giác vuông MNP có:

\(MN = \sqrt {M{P^2} + N{P^2}} \)\( = \sqrt {\frac{{9{a^2}}}{4} + \frac{{{a^2}}}{4}}  = \frac{{a\sqrt {10} }}{2}\).

Câu 17: Trắc nghiệm ID: 263818

Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông cạnh bằng \(a\) và \(SA \bot \left( {ABCD} \right).\) Biết \(SA = \frac{{a\sqrt 6 }}{3}\). Tính góc giữa \(SC\) và \(\left( {ABCD} \right).\)

Xem đáp án

Vì \(SA \bot \left( {ABCD} \right)\) nên AC là hình chiếu của SC lên (ABCD).

\( \Rightarrow \angle \left( {SC;\left( {ABCD} \right)} \right)\)\( = \angle \left( {SC;AC} \right) = \angle SCA\) .

Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AC\), do đó tam giác SAC vuông tại A.

Ta có: ABCD là hình vuông cạnh a nên \(AC = a\sqrt 2 \).

Xét tam giác vuông SAC có: \(\tan \angle SCA = \frac{{SA}}{{AC}}\)\( = \frac{{a\sqrt 6 }}{3}:a\sqrt 2  = \frac{{\sqrt 3 }}{3}\) \( \Rightarrow \angle SCA = {30^0}\)

Vậy góc giữa SC và (ABCD) bằng \({30^0}\).

Câu 18: Trắc nghiệm ID: 263819

Tìm tất cả các số thực \(x\) để ba số \(3x - 1;\) \(x;\) \({\rm{3}}x + 1\) theo thứ tự lập thành một cấp số nhân.

Xem đáp án

Để ba số \(3x - 1;\) \(x;\) \({\rm{3}}x + 1\) theo thứ tự lập thành một cấp số nhân thì:

\(\begin{array}{l}\left( {3x - 1} \right)\left( {3x + 1} \right) = {x^2}\\ \Leftrightarrow 9{x^2} - 1 = {x^2}\\ \Leftrightarrow 8{x^2} = 1\\ \Leftrightarrow x =  \pm \frac{{\sqrt 2 }}{4}\end{array}\)

Câu 19: Trắc nghiệm ID: 263820

Cho dãy số \(\left( {{u_n}} \right)\) có \({u_n} = {n^2} + 2n\). Số hạng thứ tám của dãy số là:

Xem đáp án

Số hạng thứ 8 của dãy là \({u_8} = {8^2} + 2.8 = 80\).

Câu 20: Trắc nghiệm ID: 263821

Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai \(d\). Tổng của n số hạng đầu tiên của cấp số cộng là

Xem đáp án

Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai \(d\). Tổng của \(n\) số hạng đầu tiên của cấp số cộng là \({S_n} = \frac{n}{2}\left[ {2{u_1} + (n - 1)d} \right]\).

Câu 21: Trắc nghiệm ID: 263822

Cho hàm số\(f(x) = {x^3} + 3{x^2} - 9x - 2019\). Tập hợp tất cả các số thực \(x\) sao cho \(f'(x) = 0\) là

Xem đáp án

TXĐ: \(D = \mathbb{R}\).

Ta có: \(f'\left( x \right) = 3{x^2} + 6x - 9\).

Khi đó: \(f'\left( x \right) = 0\)\( \Leftrightarrow 3{x^2} + 6x - 9 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 3\end{array} \right.\) .

Vậy tập nghiệm của phương trình \(f'\left( x \right) = 0\) là \(\left\{ { - 3;1} \right\}\).

Câu 22: Trắc nghiệm ID: 263823

Tìm số các số nguyên m thỏa mãn

\(\mathop {\lim }\limits_{x \to  + \infty } \left( {3\sqrt {m{x^2} + 2x + 1}  - mx} \right)\)\( =  + \infty .\)

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\,\mathop {\lim }\limits_{x \to  + \infty } \left( {3\sqrt {m{x^2} + 2x + 1}  - mx} \right)\\ = \mathop {\lim }\limits_{x \to  + \infty } x\left( {3\sqrt {m + \frac{2}{x} + \frac{1}{{{x^2}}}}  - m} \right)\end{array}\)

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } x =  + \infty \), do đó để  \(\mathop {\lim }\limits_{x \to  + \infty } \left( {3\sqrt {m{x^2} + 2x + 1}  - mx} \right) =  + \infty \) thì \(\mathop {\lim }\limits_{x \to  + \infty } \left( {3\sqrt {m + \frac{2}{x} + \frac{1}{{{x^2}}}}  - m} \right) > 0\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}3\sqrt m  - m > 0\\m \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge 0\\3\sqrt m  > m\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m \ge 0\\9m > {m^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge 0\\0 < m < 9\end{array} \right.\\ \Leftrightarrow 0 < m < 9\end{array}\)

Mà \(m \in \mathbb{Z}\)\( \Rightarrow m \in \left\{ {1;2;3;4;5;6;7;8} \right\}\)

Với \(m = 0\) ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \left( {3\sqrt {2x + 1} } \right) =  + \infty \,\,\left( {tm} \right)\), với \(m = 9\) ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \left( {3\sqrt {9{x^2} + 2x + 1}  - 9x} \right) = 1\) (KTM)

Vậy có 9 giá trị của m thỏa mãn yêu cầu bài toán.

Câu 23: Trắc nghiệm ID: 263824

Trong các dãy số \(\left( {{u_n}} \right)\) sau, dãy số nào bị chặn ?

Xem đáp án

Xét đáp án D ta có: \({u_n} = \frac{{n + 1}}{{n + 2019}}\)\( \Rightarrow {u_{n + 1}} = \frac{{n + 2}}{{n + 2020}}\)

Xét hiệu \(H = {u_{n + 1}} - {u_n}\) ta có:

\(\begin{array}{l}H = {u_{n + 1}} - {u_n}\\ = \frac{{n + 2}}{{n + 2020}} - \frac{{n + 1}}{{n + 2019}}\\ = \frac{{\left( {n + 2} \right)\left( {n + 2019} \right) - \left( {n + 1} \right)\left( {n + 2020} \right)}}{{\left( {n + 2019} \right)\left( {n + 2020} \right)}}\\ = \frac{{{n^2} + 2021n + 4038 - {n^2} - 2021n - 2020}}{{\left( {n + 2019} \right)\left( {n + 2020} \right)}}\\ = \frac{{2018}}{{\left( {n + 2019} \right)\left( {n + 2020} \right)}} > 0,\forall n \in {\mathbb{N}^*}\end{array}\)

Do đó dãy số \({u_n} = \frac{{n + 1}}{{n + 2019}}\) là dãy số tăng.

Ta có: \({u_n} = \frac{{n + 1}}{{n + 2019}} = 1 - \frac{{2018}}{{n + 2019}} < 1,\)\(\forall n \in {\mathbb{N}^*}\)

Do đó dãy số tăng và bị chặn trên bởi 1.

 Lại có:

\(\begin{array}{l}n \ge 1 \Leftrightarrow n + 2019 \ge 2020\\ \Leftrightarrow \frac{{2018}}{{n + 2019}} \le \frac{{2018}}{{2020}} = \frac{{1009}}{{1010}}\\ \Rightarrow  - \frac{{2018}}{{n + 2019}} \ge  - \frac{{1009}}{{1010}}\\ \Rightarrow {u_n} = 1 - \frac{{2018}}{{n + 2019}} \ge \frac{1}{{1010}}\end{array}\)

Do đó dãy số bị chặn dưới bởi \(\frac{1}{{1010}}\).

Vậy dãy số \({u_n} = \frac{{n + 1}}{{n + 2019}}\) là dãy số bị chặn.

Câu 24: Trắc nghiệm ID: 263825

Biết f(x), g(x) là các hàm số thỏa mãn \(\mathop {\lim }\limits_{x \to 1} f(x) =  - 2\) và \(\mathop {\lim }\limits_{x \to 1} g(x) = 5\). Khi đó \(\mathop {\lim }\limits_{x \to 1} \left[ {2f(x) + g(x)} \right]\) bằng

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\,\mathop {\lim }\limits_{x \to 1} \left[ {2f(x) + g(x)} \right]\\ = 2\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right)\\ = 2.\left( { - 2} \right) + 5 = 1.\end{array}\)

Câu 25: Trắc nghiệm ID: 263826

Cho cấp số cộng \(({u_n})\). Tìm  \({u_1}\) và công sai \(d,\)biết tổng n số hạng đầu tiên của cấp số cộng là \({S_n} = 2{n^2} - 5n.\)

Xem đáp án

Thay \(n = 1\) ta có \({S_1} = {2.1^2} - 5.1 =  - 3 = {u_1}\).

Thay \(n = 2\) ta có \({S_2} = {2.2^2} - 5.2 =  - 2 = {u_1} + {u_2}\)

\( \Rightarrow {u_2} = {S_2} - {u_1} =  - 2 - \left( { - 3} \right) = 1\).

\( \Rightarrow d = {u_2} - {u_1} = 1 - \left( { - 3} \right) = 4.\)

Vậy \({u_1} =  - 3,\,\,d = 4\).

Câu 26: Trắc nghiệm ID: 263827

Cho tứ diện \(ABCD\) có \(AB = CD = a,\) \(EF = \frac{{a\sqrt 3 }}{2}\), (\(E,\,\,F\) lần lượt là trung điểm của \(BC\) và\(AD\)). Số đo góc giữa hai đường thẳng \(AB\) và \(CD\) là:

Xem đáp án

Gọi M là trung điểm của AC.

Ta có:

+ ME là đường trung bình của tam giác ABC nên ME // AB và \(ME = \frac{1}{2}AB = \frac{a}{2}\).

+ MF là đường trung bình của tam giác ACD nên MF // CD và \(MF = \frac{1}{2}CD = \frac{a}{2}\).

Do đó \(\angle \left( {AB;CD} \right) = \angle \left( {ME;MF} \right)\).

Áp dụng định lí Cosin trong tam giác MEF ta có:

\(\begin{array}{l}\cos \angle EMF\\ = \frac{{M{E^2} + M{F^2} - E{F^2}}}{{2ME.MF}}\\ = \frac{{\frac{{{a^2}}}{4} + \frac{{{a^2}}}{4} - \frac{{3{a^2}}}{4}}}{{2.\frac{a}{2}.\frac{a}{2}}} =  - \frac{1}{2}\\ \Rightarrow \angle EMF = {120^0}\end{array}\)

Vậy \(\angle \left( {AB;CD} \right) = \angle \left( {ME;MF} \right)\)\( = {180^0} - {120^0} = {60^0}\)

Câu 27: Trắc nghiệm ID: 263828

Đạo hàm của hàm số \(y = \frac{{2x + 1}}{{x - 1}}\)  trên tập \(\mathbb{R}\backslash \left\{ 1 \right\}\) là

Xem đáp án

Áp dụng công thức tính nhanh ta có:

\(y = \frac{{2x + 1}}{{x - 1}}\) \( \Rightarrow y' = \frac{{2.\left( { - 1} \right) - 1.1}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}}\).

Câu 28: Trắc nghiệm ID: 263829

Dãy số nào sau đây có giới hạn bằng 0 ?

Xem đáp án

Ta có:

\(\lim {\left( {0,99} \right)^n} = 0\) do \(0,99 < 1\).

\(\lim \frac{{{n^2} + 4n + 1}}{{n + 1}} =  + \infty \) do bậc tử > bậc mẫu.

\(\lim \frac{{n + 1}}{{2n + 3}} = \lim \frac{{1 + \frac{1}{n}}}{{2 + \frac{3}{n}}} = \frac{1}{2}.\)

\(\lim {\left( {1,1} \right)^n} =  + \infty \) do \(1,1 > 1\).

Câu 29: Trắc nghiệm ID: 263830

Cho \(f(x) = 3{x^2}\); \(g(x) = 5(3x - {x^2})\). Bất phương trình \(f'\left( x \right) > g'\left( x \right)\) có  tập nghiệm là

Xem đáp án

Ta có:

\(\begin{array}{l}f'\left( x \right) = 6x\\g'\left( x \right) = 5.\left( {3 - 2x} \right) = 15 - 10x\end{array}\)

Khi đó ta có:

\(\begin{array}{l}f'\left( x \right) > g'\left( x \right)\\ \Leftrightarrow 6x > 15 - 10x\\ \Leftrightarrow 16x > 15\\ \Leftrightarrow x > \frac{{15}}{{16}}\end{array}\)

Vậy tập nghiệm của bất phương trình là \(\left( {\frac{{15}}{{16}}; + \infty } \right).\)

Câu 30: Trắc nghiệm ID: 263831

Tính \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {2{x^2} + x}  - \sqrt {{x^2} + 1} }}{{2x + 1}}.\)

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {2{x^2} + x}  - \sqrt {{x^2} + 1} }}{{2x + 1}}\\ = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {2 + \frac{1}{x}}  - \sqrt {1 + \frac{1}{x}} }}{{2 + \frac{1}{x}}}\\ = \frac{{\sqrt 2  - 1}}{2}\end{array}\)

Câu 31: Trắc nghiệm ID: 263832

Phương trình tiếp tuyến của đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại điểm có tung độ bằng 2 là:

Xem đáp án

TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Cho \(y = 2 \Rightarrow \frac{{x + 1}}{{x - 1}} = 2\)\( \Leftrightarrow x + 1 = 2x - 2 \Leftrightarrow x = 3\)

Ta có: \(y' = \frac{{ - 2}}{{{{\left( {x - 1} \right)}^2}}}\)\( \Rightarrow y'\left( 3 \right) = \frac{{ - 2}}{{{2^2}}} =  - \frac{1}{2}\) .

Vậy phương trình tiếp tuyến của đồ thị hàm số \(y = \frac{{x + 1}}{{x - 1}}\) tại điểm có tung độ bằng 2 là:

\(y =  - \frac{1}{2}\left( {x - 3} \right) + 2\)\( \Leftrightarrow y =  - \frac{1}{2}x + \frac{7}{2}\) .

Câu 32: Trắc nghiệm ID: 263833

Cho tứ diện \(OABC\) có \(OA,\,\,OB,\,\,OC\) đôi một vuông góc. Biết \(OA = OB = OC = a\), tính diện tích tam giác \(ABC\).

Xem đáp án

Dễ thấy \(\Delta OAB = \Delta OAC = \Delta OBC\,\,\left( {c.g.c} \right)\)\( \Rightarrow AB = AC = BC\)

\( \Rightarrow \) Tam giác \(ABC\) đều cạnh \(AB = \sqrt {O{A^2} + O{B^2}} \)\( = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)  

\({S_{ABC}} = \frac{{{{\left( {a\sqrt 2 } \right)}^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{2}\).

Câu 33: Trắc nghiệm ID: 263834

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),\,\,\Delta ABC\) vuông tại \(B,\,\,AH\) là đường cao của \(\Delta SAB\), \(AK\) là đường cao của \(\Delta SAC\). Khẳng định nào sau đây sai?

Xem đáp án

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right.\\ \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH\\\left\{ \begin{array}{l}AH \bot BC\\AH \bot SB\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right)\\ \Rightarrow \left\{ \begin{array}{l}AH \bot HK\\AH \bot BC\\AH \bot SC\end{array} \right.\end{array}\)

Do đó các đáp án A, C, D đúng.

Câu 34: Trắc nghiệm ID: 263835

Cho tứ diện \(S.ABC\) có \(G\) là trọng tâm tam giác \(ABC\), điểm \(M\) nằm trên đoạn \(SA\) sao cho \(AM = 2MS\). Mệnh đề nào dưới đây đúng?

Xem đáp án

\(\begin{array}{l}\overrightarrow {MG}  = \overrightarrow {MS}  + \overrightarrow {SG} \\ =  - \frac{1}{3}\overrightarrow {SA}  + \frac{1}{3}\left( {\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC} } \right)\\ =  - \frac{1}{3}\overrightarrow {SA}  + \frac{1}{3}\overrightarrow {SA}  + \frac{1}{3}\overrightarrow {SB}  + \frac{1}{3}\overrightarrow {SC} \\ = \frac{1}{3}\overrightarrow {SB}  + \frac{1}{3}\overrightarrow {SC} \end{array}\)

Câu 35: Trắc nghiệm ID: 263836

Biết giới hạn \(\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {{x^2} + 1}  + x + 1} \right) = a\). Tính giá trị của \(2a + 1\).

Xem đáp án

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {{x^2} + 1}  + x + 1} \right) = a\\ = \mathop {\lim }\limits_{x \to  - \infty } \frac{{{x^2} + 1 - {{\left( {x + 1} \right)}^2}}}{{\sqrt {{x^2} + 1}  - x - 1}}\\ = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - 2x}}{{\sqrt {{x^2} + 1}  - x - 1}}\\ = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - 2}}{{ - \sqrt {1 + \frac{1}{{{x^2}}}}  - 1 - \frac{1}{x}}}\\ = \frac{{ - 2}}{{ - 2}} = 1 = a\\ \Rightarrow 2a + 1 = 2.1 + 1 = 3\end{array}\)

Câu 36: Trắc nghiệm ID: 263837

Tính giới hạn \(\lim \frac{{{1^2} + {2^2} + {3^2} + ... + {n^2}}}{{{n^3} + 3n}}\).

Xem đáp án

Bằng phương pháp quy nạp toán học ta chứng minh \({1^2} + {2^2} + {3^2} + ... + {n^2}\)\( = \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6},\)\(\forall n \ge 1,n \in \mathbb{Z}\).

Đẳng thức trên đúng với \(n = 1\) vì \(1 = \frac{{1.2.3}}{6}\).

Giả sử đẳng thức trên đúng đến \(n = k\)

\( \Rightarrow {1^2} + {2^2} + ... + {k^2}\) \( = \frac{{k\left( {k + 1} \right)\left( {2k + 1} \right)}}{6}\)

Ta cần chứng minh nó đúng đến \(n = k + 1\), tức là cần chứng minh

\({1^2} + {2^2} + ... + {\left( {k + 1} \right)^2}\)\( = \frac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6}\) .

Ta có:

\(\begin{array}{l}VT\\ = {1^2} + {2^2} + ... + {\left( {k + 1} \right)^2}\\ = \frac{{k\left( {k + 1} \right)\left( {2k + 1} \right)}}{6} + {\left( {k + 1} \right)^2}\\ = \frac{{\left( {k + 1} \right)\left( {2{k^2} + k + 6k + 6} \right)}}{6}\\ = \frac{{\left( {k + 1} \right)\left( {2{k^2} + 7k + 6} \right)}}{6}\\ = \frac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6}\\ = VP\end{array}\)

\( \Rightarrow \) Đẳng thức được chứng minh. Khi đó ta có:

\(\begin{array}{l}\lim \frac{{{1^2} + {2^2} + {3^2} + ... + {n^2}}}{{{n^3} + 3n}}\\ = \lim \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{{6\left( {{n^3} + 3n} \right)}}\\ = \lim \frac{{1.\left( {1 + \frac{1}{n}} \right)\left( {2 + \frac{1}{n}} \right)}}{{6\left( {1 + \frac{3}{{{n^2}}}} \right)}}\\ = \frac{{1.1.2}}{{6.1}} = \frac{1}{3}\end{array}\)

Câu 37: Trắc nghiệm ID: 263838

Cho hàm số \(f\left( x \right)\) xác định bởi: \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 2}}{{x - 2}}\,\,khi\,\,x \ne 2\\2\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 2\end{array} \right.\). Tìm khẳng định sai trong các khẳng định sau đây?

Xem đáp án

Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 2}}{{x - 2}} =  + \infty \)

\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 2}}{{x - 2}} =  - \infty \)

Do đó không tồn tại giới hạn của hàm số khi x tiến đến 2.

Do đó hàm số \(f\left( x \right)\) gián đoạn tại \(x = 2\).

Câu 38: Trắc nghiệm ID: 263839

Cho hàm số \(y = m{x^3} - {x^2} - x + 3\). Với giá trị nào của \(m\) thì phương trình \(y' = 0\) có hai nghiệm trái dấu?

Xem đáp án

Ta có: \(y' = 3m{x^2} - 2x - 1 = 0\).

Để phương trình \(y' = 0\) có hai nghiệm trái dấu thì \(ac < 0\)\( \Leftrightarrow  - 3m < 0 \Leftrightarrow m > 0\) .

Câu 39: Trắc nghiệm ID: 263840

Cho hàm số \(f\left( x \right)\) xác định bởi: \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 1}}{{{x^2} - 1}}\,\,\,khi\,\,x > 1\\ax + 2\,\,\,khi\,\,x \le 1\end{array} \right.\). Xác định \(a\) để hàm số \(f\left( x \right)\) liên tục tại \(x = 1\).

Xem đáp án

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^3} - 1}}{{{x^2} - 1}}\\ = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + x + 1}}{{x + 1}} = \frac{3}{2}\\\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {ax + 2} \right)\\ = a + 2\end{array}\)

Để để hàm số \(f\left( x \right)\) liên tục tại \(x = 1\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\)\( \Leftrightarrow a + 2 = \frac{3}{2} \Leftrightarrow a =  - \frac{1}{2}\).

Câu 40: Trắc nghiệm ID: 263841

Đạo hàm cấp hai của hàm số \(y =  - \sin 2x + 1\) là hàm số nào sau đây?

Xem đáp án

\(y' =  - 2\cos 2x\)\( \Rightarrow y'' = 4\sin 2x\) .

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »