Cho tứ diện \(ABCD\) có \(AC = a,\) \(BD = 3a\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AD\) và \(BC.\) Biết \(AC\) vuông góc với\(BD\). Tính độ dài đoạn thẳng \(MN\) theo \(a.\)
A. \(MN = \frac{{3a\sqrt 2 }}{2}.\)
B. \(MN = \frac{{a\sqrt 6 }}{3}.\)
C. \(MN = \frac{{a\sqrt {10} }}{2}.\)
D. \(MN = \frac{{2a\sqrt 3 }}{3}.\)
Lời giải của giáo viên
ToanVN.com
.png)
Gọi P là trung điểm của AC. Khi đó ta có:
+ NP là đường trung bình của tam giác ABC nên NP = \(\frac{1}{2}\)AC = \(\frac{a}{2}\) và NP // AC.
+ MP là đường trung bình của tam giác ABD nên MP = \(\frac{1}{2}\)BD = \(\frac{{3a}}{2}\) và MP // BD.
Mà \(AC \bot BD\,\,\left( {gt} \right)\) nên \(NP \bot MP \Rightarrow \Delta MNP\) vuông tại P.
Áp dụng định lí Pytago trong tam giác vuông MNP có:
\(MN = \sqrt {M{P^2} + N{P^2}} \)\( = \sqrt {\frac{{9{a^2}}}{4} + \frac{{{a^2}}}{4}} = \frac{{a\sqrt {10} }}{2}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Giả sử \(M\) là điểm có hoành độ \({x_0} = 1\) thuộc đồ thị hàm số \(\left( C \right)\) của hàm số \(y = {x^3} - 6{x^2} + 1\). Khẳng định nào dưới đây đúng?
Một chất điểm chuyển động có phương trình là \(s = {t^2} + 2t + 3\) (\(t\) tính bằng giây, \(s\) tính bằng mét). Khi đó vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) giây là
Biết giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 1} + x + 1} \right) = a\). Tính giá trị của \(2a + 1\).
Tính \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {2{x^2} + x} - \sqrt {{x^2} + 1} }}{{2x + 1}}.\)
Cho hàm số \(f\left( x \right)\) xác định bởi: \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 2}}{{x - 2}}\,\,khi\,\,x \ne 2\\2\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 2\end{array} \right.\). Tìm khẳng định sai trong các khẳng định sau đây?
Tính giới hạn \(\lim \frac{{{1^2} + {2^2} + {3^2} + ... + {n^2}}}{{{n^3} + 3n}}\).
Cho hàm số \(f\left( x \right)\) xác định bởi: \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 1}}{{{x^2} - 1}}\,\,\,khi\,\,x > 1\\ax + 2\,\,\,khi\,\,x \le 1\end{array} \right.\). Xác định \(a\) để hàm số \(f\left( x \right)\) liên tục tại \(x = 1\).
Tìm tất cả các số thực \(x\) để ba số \(3x - 1;\) \(x;\) \({\rm{3}}x + 1\) theo thứ tự lập thành một cấp số nhân.
Cho hàm số \(f\left( x \right) = \frac{1}{{{x^2} + 1}}\). Tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). \(M,N,P,Q\) lần lượt là trung điểm của \(AB,BC,C'D'\) và \(D'A'\). Khoảng cách giữa hai đường thẳng \(MN\) và \(PQ\) bằng
.png)
Cho \(f(x) = 3{x^2}\); \(g(x) = 5(3x - {x^2})\). Bất phương trình \(f'\left( x \right) > g'\left( x \right)\) có tập nghiệm là
Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai \(d\). Tổng của n số hạng đầu tiên của cấp số cộng là
Tìm số các số nguyên m thỏa mãn
\(\mathop {\lim }\limits_{x \to + \infty } \left( {3\sqrt {m{x^2} + 2x + 1} - mx} \right)\)\( = + \infty .\)
Hình chóp đều \(S.ABCD\) có \(SA = AB = a\). Cosin góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) bằng
.png)
Trong các dãy số \(\left( {{u_n}} \right)\) sau, dãy số nào bị chặn ?
