Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông cạnh bằng \(a\) và \(SA \bot \left( {ABCD} \right).\) Biết \(SA = \frac{{a\sqrt 6 }}{3}\). Tính góc giữa \(SC\) và \(\left( {ABCD} \right).\)
A. \({60^0}.\)
B. \({45^0}.\)
C. \({30^0}.\)
D. \({90^0}.\)
Lời giải của giáo viên
ToanVN.com
.png)
Vì \(SA \bot \left( {ABCD} \right)\) nên AC là hình chiếu của SC lên (ABCD).
\( \Rightarrow \angle \left( {SC;\left( {ABCD} \right)} \right)\)\( = \angle \left( {SC;AC} \right) = \angle SCA\) .
Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AC\), do đó tam giác SAC vuông tại A.
Ta có: ABCD là hình vuông cạnh a nên \(AC = a\sqrt 2 \).
Xét tam giác vuông SAC có: \(\tan \angle SCA = \frac{{SA}}{{AC}}\)\( = \frac{{a\sqrt 6 }}{3}:a\sqrt 2 = \frac{{\sqrt 3 }}{3}\) \( \Rightarrow \angle SCA = {30^0}\)
Vậy góc giữa SC và (ABCD) bằng \({30^0}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Giả sử \(M\) là điểm có hoành độ \({x_0} = 1\) thuộc đồ thị hàm số \(\left( C \right)\) của hàm số \(y = {x^3} - 6{x^2} + 1\). Khẳng định nào dưới đây đúng?
Một chất điểm chuyển động có phương trình là \(s = {t^2} + 2t + 3\) (\(t\) tính bằng giây, \(s\) tính bằng mét). Khi đó vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) giây là
Biết giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 1} + x + 1} \right) = a\). Tính giá trị của \(2a + 1\).
Tính \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {2{x^2} + x} - \sqrt {{x^2} + 1} }}{{2x + 1}}.\)
Cho hàm số \(f\left( x \right) = \frac{1}{{{x^2} + 1}}\). Tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là
Tính giới hạn \(\lim \frac{{{1^2} + {2^2} + {3^2} + ... + {n^2}}}{{{n^3} + 3n}}\).
Cho hàm số \(f\left( x \right)\) xác định bởi: \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 2}}{{x - 2}}\,\,khi\,\,x \ne 2\\2\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 2\end{array} \right.\). Tìm khẳng định sai trong các khẳng định sau đây?
Tìm tất cả các số thực \(x\) để ba số \(3x - 1;\) \(x;\) \({\rm{3}}x + 1\) theo thứ tự lập thành một cấp số nhân.
Cho hàm số \(f\left( x \right)\) xác định bởi: \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 1}}{{{x^2} - 1}}\,\,\,khi\,\,x > 1\\ax + 2\,\,\,khi\,\,x \le 1\end{array} \right.\). Xác định \(a\) để hàm số \(f\left( x \right)\) liên tục tại \(x = 1\).
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). \(M,N,P,Q\) lần lượt là trung điểm của \(AB,BC,C'D'\) và \(D'A'\). Khoảng cách giữa hai đường thẳng \(MN\) và \(PQ\) bằng
.png)
Tìm số các số nguyên m thỏa mãn
\(\mathop {\lim }\limits_{x \to + \infty } \left( {3\sqrt {m{x^2} + 2x + 1} - mx} \right)\)\( = + \infty .\)
Cho \(f(x) = 3{x^2}\); \(g(x) = 5(3x - {x^2})\). Bất phương trình \(f'\left( x \right) > g'\left( x \right)\) có tập nghiệm là
Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai \(d\). Tổng của n số hạng đầu tiên của cấp số cộng là
Trong các dãy số \(\left( {{u_n}} \right)\) sau, dãy số nào bị chặn ?
Hình chóp đều \(S.ABCD\) có \(SA = AB = a\). Cosin góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) bằng
.png)
