Đề thi HK1 môn Toán 11 năm 2021-2022 - Trường THPT Hà Huy Tập

Đề thi HK1 môn Toán 11 năm 2021-2022 - Trường THPT Hà Huy Tập

  • Hocon247

  • 40 câu hỏi

  • 60 phút

  • 32 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 263442

Trong mặt phẳng tọa độ \(Oxy\),  cho điểm \(A\left( {2;5} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow v  = \left( {1;2} \right)\) biến điểm \(A\) thành điểm \(A'\) có tọa độ là.

Xem đáp án

\(\begin{array}{l}{T_{\overrightarrow v }}\left( A \right) = A' \Leftrightarrow AA' = \overrightarrow v \\ \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = {x_A} + 1 = 3\\{y_{A'}} = {y_A} + 2 = 7\end{array} \right.\end{array}\)

Chọn A

Câu 2: Trắc nghiệm ID: 263443

Số các sắp xếp 3 học sinh nam và 2 học sinh nữ vào một bàn dài có 5 ghế ngồi là

Xem đáp án

Có tất cả 5 học sinh. Xếp 5 học sinh vào 5 vị trí: Có 5! Cách xếp

Chọn B

Câu 3: Trắc nghiệm ID: 263444

Phương trình \({\cos ^2}x + 2\cos x - 3 = 0\) có nghiệm là

Xem đáp án

Đặt \(\cos x = t\left( { - 1 \le t \le 1} \right)\). Phương trình ban đầu trở thành:

\(\begin{array}{l}{t^2} + 2t - 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}t = 1\\t =  - 3\left( L \right)\end{array} \right.\\ \Leftrightarrow \cos x = 1 \Leftrightarrow x = k2\pi ,k \in \mathbb{Z}\end{array}\)

Chọn D.

Câu 4: Trắc nghiệm ID: 263445

Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(M\left( { - 10;1} \right)\) và \(M'\left( {3;8} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow v \) biến điểm \(M\) thành điểm \(M'\). Khi đó vectơ \(\overrightarrow v \) có tọa độ là

Xem đáp án

\(\begin{array}{l}{T_{\overrightarrow v }}\left( M \right) = M' \Leftrightarrow \overrightarrow {MM'}  = \overrightarrow v \\\overrightarrow {MM'}  = \left( {13;7} \right) \Rightarrow \overrightarrow v  = \left( {13;7} \right)\end{array}\)

Chọn D.

Câu 6: Trắc nghiệm ID: 263447

Cho khai triển:

\(\begin{array}{l}{\left( {2x - {y^2}} \right)^6} = 64C_6^0{x^6} - 32C_6^1{x^5}{y^2}\\ + 16C_6^2{x^4}{y^4} + ... + 4C_6^4{x^2}{y^8} \\- 2C_6^5x{y^{10}} + C_6^6{y^{12}}\end{array}\).

Số hạng trong dấu \(...\)là 

Xem đáp án

Số hạng trong dấu ... là \(C_6^3{\left( {2x} \right)^3}{\left( { - {y^2}} \right)^3} =  - C_6^3{\left( {2x} \right)^3}{y^6}\)

Chọn A.

Câu 8: Trắc nghiệm ID: 263449

Có 20  người tham gia một buổi tiệc, trong 20 người đó có 4 cặp vợ chồng. Ban tổ chức cần chọn 3 người tham gia một trò chơi. Có bao nhiêu cách chọn sao cho 3 người đó không có 2 người nào là vợ chồng?

Xem đáp án

Tính số cách chọn 3 người trong đó có 1 cặp vợ chồng.

Có 4 cặp vợ chồng.

Với mỗi cặp vợ chồng, có 20-2=18 cách chọn người thứ 3.

Có 4.18=72 cách chọn.

Có \(C_{20}^3 = 1140\) cách chọn 3 người bất kì.

Vậy có 1140-72=1068 cách chọn mà trong đó không có cặp vợ chồng nào.

Chọn C.

Câu 9: Trắc nghiệm ID: 263450

Cho một đa giác đều có 32 đỉnh. Chọn ngẫu nhiên 3 đỉnh từ 32 đỉnh của đa giác đều. Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông, không cân là

Xem đáp án

Gọi A là biến cố “3 đỉnh không là tam giác vuông, không cân”

Không gian mẫu: \(n\left( \Omega  \right) = C_{32}^3 = 4960\)

Gọi O là tâm đường tròn ngoại tiếp đa giác.

Tam giác vuông phải có cạnh huyền là đường kính của đường tròn.

Đa giác đều 32 đỉnh có 16 cách chọn đường kính phân biệt.

Với mỗi đường kính, có \(32 - 2 = 30\) tam giác vuông, trong đó có 2 tam giác vuông cân. Vậy có 28 tam giác vuông, không cân.

\( \Rightarrow n\left( A \right) = 16.28 = 448\)

\(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \dfrac{{448}}{{4960}} = \dfrac{{14}}{{155}}\)

Chọn B

Câu 10: Trắc nghiệm ID: 263451

Cho \(\Delta ABC\) có trọng tâm G. Gọi M,N,P lần lươt là trung điểm của \(AB,BC,CA\). Phép vị tự nào sau đây biến \(\Delta ABC\) thành \(\Delta NPM\)?

Xem đáp án

Gọi \({V_{\left( {O,k} \right)}}\) là phép vị tự tâm O tỷ số k là phép vị tự thỏa mãn bài toán.

Khi đó \(O\) là giao của \(AN,BP,CM\)\( \Rightarrow O \equiv G\)\( \Rightarrow \overrightarrow {GN}  = k\overrightarrow {GA} \)

Mà \(\overrightarrow {GN}  =  - \dfrac{1}{2}\overrightarrow {GA}  \Rightarrow k =  - \dfrac{1}{2}\)

Chọn A.

Câu 11: Trắc nghiệm ID: 263452

Phương trình \(\sin \left( {2x - \dfrac{\pi }{3}} \right) = 0\) có nghiệm là

Xem đáp án

\(\begin{array}{l}\sin \left( {2x - \dfrac{\pi }{3}} \right) = 0 \Leftrightarrow 2x - \dfrac{\pi }{3} = k\pi \\ \Leftrightarrow x = \dfrac{\pi }{6} + \dfrac{{k\pi }}{2},k \in \mathbb{Z}\end{array}\)

Chọn B

Câu 12: Trắc nghiệm ID: 263453

Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(A\left( {3;0} \right)\). Phép quay tâm \(O\) góc quay \(90^\circ \) biến điểm A thành điểm nào sau đây?

Xem đáp án

\(A\left( {x;y} \right)\)

\(\begin{array}{l}{Q_{\left( {O,90^\circ } \right)}}\left( A \right) = A' \Leftrightarrow A'\left( { - y;x} \right)\\ \Rightarrow A'\left( {0;3} \right)\end{array}\)

Chọn D

Câu 13: Trắc nghiệm ID: 263454

Cho hình vuông \(ABCD\) tâm \(O\) có thứ tự như hình vẽ, gọi I là trung điểm BC. ảnh của điểm I qua phép quay tâm \(O\), góc quay \(90^\circ \) là

Xem đáp án

 

Chiều quay ngược chiều kim đồng hồ, góc \(90^\circ \) nên ảnh của I là trung điểm của cạnh CD.

Chọn C.

Câu 14: Trắc nghiệm ID: 263455

Trong mặt phẳng tọa độ \(Oxy\), phép vị tự tâm O tỉ số \( - 2\) biến điểm \(A\left( {1; - 3} \right)\) thành điểm \(A'\) có tọa độ là

Xem đáp án

\(\begin{array}{l}{V_{\left( {O, - 2} \right)}}\left( A \right) = A' \Leftrightarrow \overrightarrow {OA'}  =  - 2\overrightarrow {OA} \\ \Leftrightarrow A'\left( { - 2;6} \right)\end{array}\)

Chọn B

Câu 17: Trắc nghiệm ID: 263458

Phép vị tự tâm O tỉ số \(k\left( {k \ne 0} \right)\) biến mỗi điểm \(M\) thành điểm \(M'\). Mệnh đề nào sau đây đúng?

Xem đáp án

\(\begin{array}{l}{V_{\left( {O,k} \right)}}\left( M \right) = M' \Leftrightarrow \overrightarrow {OM'}  = k\overrightarrow {OM} \\ \Leftrightarrow \overrightarrow {OM}  = \dfrac{1}{k}\overrightarrow {OM'} \end{array}\)

Chọn A.

Câu 18: Trắc nghiệm ID: 263459

Trên giá sách có 10 quyến sách tiếng Việt khác nhau, 8 quyến sách tiếng Anh khác nhau, 6 quyển sách tiếng Pháp khác nhau. Số cách chọn ba quyển sách tiếng khác nhau là

Xem đáp án

Có 10 cách chọn sách Tiếng Việt.

Có 8 cách chọn sách Tiếng Anh.

Có 6 cách chọn sách Tiếng Pháp.

Theo quy tắc nhân, có 10.8.6=480 cách chọn 3 quyển sách khác loại.

Chọn A.

Câu 19: Trắc nghiệm ID: 263460

Gieo một con súc sắc cân đối, đồng chất một lần. Xác suất hiện mặt hai chấm là

Xem đáp án

Gọi A là biến cố: “mặt 2 chấm xuất hiện”.

Không gian mẫu \(\Omega  = \left\{ {1;2;3;4;5;6} \right\}\) có 6 phần tử.

Có 1 khả năng xuất hiện mặt hai chấm nên \(\left| {{\Omega _A}} \right| = 1\)

\(P\left( A \right) = \dfrac{{\left| {{\Omega _A}} \right|}}{{\left| \Omega  \right|}} = \dfrac{1}{6}\)

Chọn C

Câu 20: Trắc nghiệm ID: 263461

Cho hình bình hành \(ABCD\). Phép tình tiến sau \({T_{\overrightarrow {DA} }}\) biến

Xem đáp án

\(ABCD\) là hình bình hành \( \Rightarrow \overrightarrow {DA}  = \overrightarrow {CB} \)

\( \Rightarrow {T_{\overrightarrow {DA} }}\left( C \right) = B\)

Chọn D

Câu 21: Trắc nghiệm ID: 263462

Nghiệm của phương trình \(\cos x = 1\) là

Xem đáp án

\(\cos x = 1 \Leftrightarrow x = k2\pi \left( {k \in \mathbb{Z}} \right)\)

Chọn D

Câu 22: Trắc nghiệm ID: 263463

 Số cách chọn 2 học sinh từ 10 học sinh là

Xem đáp án

Số cách chọn 2 phần tử trong 10 phần tử \(C_{10}^2\)

Chọn D

Câu 23: Trắc nghiệm ID: 263464

Tập xác định của hàm số \(y = \tan x\) là

Xem đáp án

\(\tan x = \dfrac{{\sin x}}{{\cos x}}\) xác định khi \(\cos x \ne 0 \Leftrightarrow x \ne \dfrac{\pi }{2} + k\pi ,k \in \mathbb{Z}\).

\( \Rightarrow D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\)

Chọn B

Câu 24: Trắc nghiệm ID: 263465

Nghiệm của phương trình \(\tan x = 1\) là

Xem đáp án

\(\tan x = 1 \Leftrightarrow x = \dfrac{\pi }{4} + k\pi ,k \in \mathbb{Z}\)

Chọn C

Câu 25: Trắc nghiệm ID: 263466

Khi gieo một đồng tiền (có hai mặt S,N) cân đối và đồng chất hai lần. Không gian mẫu của phép thử là

Xem đáp án

Không gian mẫu \(\Omega  = \left\{ {SS,NN,SN,NS} \right\}\)

Chọn C.

Câu 26: Trắc nghiệm ID: 263467

Gieo một con xúc xắc cân đối đồng chất \(2\) lần. Tính xác suất để tổng số chấm xuất hiện trong hai lần gieo bằng \(8.\)

Xem đáp án

Gieo con xúc sắc hai lần, \(n\left( \Omega  \right) = 6.6 = 36\).

Gọi \(A\) là biến cố: “Tổng số chấm xuất hiện trong hai lần gieo bằng \(8\)”

Khi đó \(A = \left\{ {\left( {2;6} \right),\left( {3;5} \right),\left( {4;4} \right),\left( {5;3} \right),\left( {6;2} \right)} \right\}\) \( \Rightarrow n\left( A \right) = 5\)

Xác suất \(P\left( A \right) = \dfrac{5}{{36}}\).

Chọn C.

Câu 27: Trắc nghiệm ID: 263468

Trong các dãy số \(\left( {{u_n}} \right)\) xác định bởi số hạng tổng quát \({u_n}\) sau, hỏi dãy số nào là dãy số giảm ?

Xem đáp án

Đáp án A: \(\dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{{2^{n + 1}}}}{{{2^n}}} = 2 > 1\) nên dãy số tăng.

Đáp án B: \({u_{n + 1}} - {u_n} = 2\left( {n + 1} \right) - 5 - 2n + 5 = 2 > 0\) nên dãy số tăng.

Đáp án C: Dãy số \( - 3;9; - 27;81;...\) không tăng không giảm.

Đáp án D: \({u_{n + 1}} - {u_n} = \dfrac{{1 - \left( {n + 1} \right)}}{{3\left( {n + 1} \right) + 2}} - \dfrac{{1 - n}}{{3n + 2}}\) \( = \dfrac{{ - n}}{{3n + 5}} - \dfrac{{1 - n}}{{3n + 2}}\) \( = \dfrac{{ - 3{n^2} - 2n - 3n - 5 + 3{n^2} + 5n}}{{\left( {3n + 5} \right)\left( {3n + 2} \right)}}\) \( = \dfrac{{ - 5}}{{\left( {3n + 5} \right)\left( {3n + 2} \right)}} < 0\)

Do đó dãy số \(\left( {{u_n}} \right)\) giảm.

Chọn D.

Câu 28: Trắc nghiệm ID: 263469

Cho hai đường thẳng phân biệt \(a,b\) và mặt phẳng \(\left( \alpha  \right).\) Giả sử \(a//\left( \alpha  \right),\,b \subset \left( \alpha  \right).\) Khi đó:

Xem đáp án

Nếu \(a//\left( \alpha  \right),\,b \subset \left( \alpha  \right)\) thì \(a//b\) hoặc \(a\) chéo \(b\).

Chọn B.

Câu 29: Trắc nghiệm ID: 263470

Tìm mệnh đề đúng trong các mệnh đề sau:

Xem đáp án

Đáp án A: sai, ta vẽ được vô số đường thẳng song song với mặt phẳng cho trước.

Đáp án B: sai, mọi đường thẳng nằm trong mặt phẳng này đều song song với mặt phẳng kia chứ không phải song song với mọi đường thẳng nằm trong mặt phẳng kia.

Đáp án C: sai, \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) có thể cắt nhau theo giao tuyến song song với \(a\) và \(b\).

Đáp án D: đúng.

Chọn D.

Câu 30: Trắc nghiệm ID: 263471

Cho hình lăng trụ \(ABC.A'B'C'.\) Gọi \(H\) là trung điểm của \(A'B'.\) Hỏi đường thẳng \(B'C\) song song với mặt phẳng nào sau đây?

Xem đáp án

 

Gọi \(K\) là giao điểm của \(A'C\) và \(AC'\).

Tam giác \(A'B'C\) có \(HK\) là đường trung bình của tam giác nên \(HK//B'C\).

Mà \(HK \subset \left( {AHC'} \right)\) nên \(B'C//\left( {AHC'} \right)\).

Chọn C.

Câu 32: Trắc nghiệm ID: 263473

Số hạng chứa \({x^3}\) trong khai triển \({\left( {x + \dfrac{1}{{2x}}} \right)^9}\) với \(x \ne 0\) là :

Xem đáp án

Số hạng tổng quát \({T_{k + 1}} = C_9^k{x^{9 - k}}{\left( {\dfrac{1}{{2x}}} \right)^k}\)\( = C_9^2.\dfrac{1}{{{2^k}}}.{x^{9 - 2k}}\).

Số hạng chứa \({x^3}\) ứng với \(9 - 2k = 3 \Leftrightarrow k = 3\).

Vậy số hạng chứa \({x^3}\) là \(C_9^3.\dfrac{1}{{{2^3}}}.{x^3} = \dfrac{1}{8}C_9^3{x^3}\).

Chọn B.

Câu 33: Trắc nghiệm ID: 263474

Cho hai hình bình hành \(ABCD\) và \(ABEF\) không cùng nằm trong một mặt phẳng. Gọi \(O,{O_1}\) lần lượt là tâm của \(ABCD,\,ABEF.\) Lấy \(M\) là trung điểm của \(CD.\) Hỏi khẳng định nào sau đây sai ?

Xem đáp án

 

Đáp án B: Dễ thấy \(O{O_1}//DF \subset \left( {EFM} \right)\) nên B đúng.

Đáp án C: \(O{O_1}//CE \subset \left( {BEC} \right)\) nên C đúng.

Đáp án D: \(O{O_1}//DF \subset \left( {AFD} \right)\) nên D đúng.

Ngoài ra A sai vì \(M{O_1}//\left( {BEC} \right)\), thật vậy,

\(O{O_1}//CE\), \(OM//BC\) nên \(\left( {O{O_1}M} \right)//\left( {BCE} \right)\) \( \Rightarrow M{O_1}//\left( {BCE} \right)\).

Chọn A.

Câu 34: Trắc nghiệm ID: 263475

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ \begin{array}{l}{u_1} =  - 3\\{u_n} = \dfrac{1}{2}{u_{n - 1}} + 1\end{array} \right.\) với \(n \in {\mathbb{N}^*},n \ge 2.\) Tìm số hạng \({u_4}.\)

Xem đáp án

Ta có: \({u_2} = \dfrac{1}{2}{u_1} + 1\) \( = \dfrac{1}{2}.\left( { - 3} \right) + 1 =  - \dfrac{1}{2}\).

\({u_3} = \dfrac{1}{2}{u_2} + 1 = \dfrac{1}{2}.\left( { - \dfrac{1}{2}} \right) + 1 = \dfrac{3}{4}\)

\({u_4} = \dfrac{1}{2}{u_3} + 1 = \dfrac{1}{2}.\dfrac{3}{4} + 1 = \dfrac{{11}}{8}\).

Chọn C

Câu 35: Trắc nghiệm ID: 263476

Hệ số của \({x^{10}}\) trong khai triển \({\left( {3{x^2} + \dfrac{1}{x}} \right)^{14}}\) với \(x \ne 0\) là :

Xem đáp án

Số hạng tổng quát: \(C_{14}^k.{\left( {3{x^2}} \right)^{14 - k}}.{\left( {\dfrac{1}{x}} \right)^k}\) \( = C_{14}^k{.3^{14 - k}}{x^{28 - 2k}}.\dfrac{1}{{{x^k}}}\) \( = C_{14}^k{.3^{14 - k}}{x^{28 - 3k}}\)

Số hạng chứa \({x^{10}}\) ứng với \(28 - 3k = 10 \Leftrightarrow k = 6\)

Hệ số \(C_{14}^6{.3^8}\).

Chọn B.

Câu 36: Trắc nghiệm ID: 263477

Cho dãy số \(\left( {{u_n}} \right)\), biết \({u_n} = \dfrac{{{n^2} + 3}}{{2{n^2} - 1}}\) với \(n \in {\mathbb{N}^*}.\) Tìm số hạng \({u_5}.\)

Xem đáp án

Ta có: \({u_5} = \dfrac{{{5^2} + 3}}{{{{2.5}^2} - 1}} = \dfrac{4}{7}\).

Chọn D.

Câu 37: Trắc nghiệm ID: 263478

Một hộp có \(6\) viên bi xanh, \(4\) viên bi đỏ và \(5\) viên bi vàng. Chọn ngẫu nhiên \(5\) viên bi trong hộp, tính xác suất để \(5\) viên bi được chọn có đủ ba màu và số bi xanh bằng số bi vàng. 

Xem đáp án

Chọn \(5\) viên bi trong hộp có \(C_{15}^5 = 3003\) cách chọn hay \(n\left( \Omega  \right) = 3003\).

Gọi \(A\) là biến cố “\(5\) viên bi được chọn có đủ ba màu và số bi xanh bằng số bi vàng”

+ TH1: \(1\) xanh, \(1\) vàng và \(3\) đỏ, có \(C_6^1.C_5^1.C_4^3 = 120\) cách chọn.

+ TH2: \(2\) xanh, \(2\) vàng và \(1\) đỏ, có \(C_6^2.C_5^2.C_4^1 = 600\) cách chọn.

Do đó \(n\left( A \right) = 120 + 600 = 720\) cách chọn.

Xác suất \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\)\( = \dfrac{{720}}{{3003}} = \dfrac{{240}}{{1001}}\).

Chọn B.

Câu 38: Trắc nghiệm ID: 263479

Giải phương trình: \(\sin x + \sin 2x = 0\)

Xem đáp án

\(\sin x + \sin 2x = 0\) \( \Leftrightarrow \sin x + 2\sin x\cos x = 0\) \( \Leftrightarrow \sin x\left( {1 + 2\cos x} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\cos x =  - \dfrac{1}{2}\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x =  \pm \dfrac{2}{3} + k2\pi \end{array} \right.,k \in \mathbb{Z}\)

Vậy phương trình có nghiệm \(x = k\pi ,x =  \pm \dfrac{{2\pi }}{3} + k2\pi \), \(k \in \mathbb{Z}\).

Câu 39: Trắc nghiệm ID: 263480

Tìm số hạng chứa \({x^{29}}\) trong khai triển theo nhị thức Niu-tơn của \({\left( {{x^2} - x} \right)^n},\) biết \(n\) là số nguyên dương thỏa mãn \(2C_n^2 - 19n = 0.\) 

Xem đáp án

Ta có:

\(2C_n^2 - 19n = 0\) \( \Leftrightarrow 2.\dfrac{{n\left( {n - 1} \right)}}{2} - 19n = 0\) \( \Leftrightarrow {n^2} - n - 19n = 0\) \( \Leftrightarrow {n^2} - 20n = 0\) \( \Leftrightarrow \left[ \begin{array}{l}n = 0\left( {loai} \right)\\n = 20\left( {TM} \right)\end{array} \right.\)

Số hạng tổng quát \(C_{20}^k{\left( {{x^2}} \right)^{20 - k}}.{x^k} = C_{20}^k{x^{40 - k}}\)

Số hạng chứa \({x^{29}}\) ứng với \(40 - k = 29 \Leftrightarrow k = 11\).

Vậy số hạng đó là \(C_{20}^{11}{x^{29}}\).

Câu 40: Trắc nghiệm ID: 263481

Trong trận bóng đá chung kết, hai bạn Việt và Nam tham gia sút phạt, biết rằng khả năng sút phạt vào lưới của Việt và Nam lần lượt là \(0,7\) và \(0,8.\) Tính xác suất để ít nhất một bạn ghi bàn.

Xem đáp án

Gọi \(A\) là biến cố: “Ít nhất một bạn ghi bàn”

Khi đó \(\overline A \) là biến cố: “Không có bạn nào ghi bàn”

Xác suất để Việt không ghi bàn là: \(1 - 0,7 = 0,3\).

Xác suất để Nam không ghi bàn là: \(1 - 0,8 = 0,2\).

Xác suất để cả hai bạn không ghi bàn là: \(P\left( {\overline A } \right) = 0,3.0,2 = 0,06\).

Xác suất để ít nhất một bạn ghi bàn là: \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - 0,06 = 0,94\).

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »