Tìm mệnh đề đúng trong các mệnh đề sau:
A. Qua một điểm nằm ngoài mặt phẳng cho trước ta vẽ được một và chỉ một đường thẳng song song với mặt phẳng cho trước đó.
B. Nếu hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) song song với nhau thì mọi đường thẳng nằm trong \(\left( \alpha \right)\) đều song song với mọi đường thẳng nằm trong \(\left( \beta \right)\).
C. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phẳng phân biệt \(\left( \alpha \right)\) và \(\left( \beta \right)\) thì \(\left( \alpha \right)\) và \(\left( \beta \right)\) song song với nhau.
D. Nếu hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) song song với nhau thì mọi đường thẳng nằm trong \(\left( \alpha \right)\) đều song song với \(\left( \beta \right).\)
Lời giải của giáo viên
ToanVN.com
Đáp án A: sai, ta vẽ được vô số đường thẳng song song với mặt phẳng cho trước.
Đáp án B: sai, mọi đường thẳng nằm trong mặt phẳng này đều song song với mặt phẳng kia chứ không phải song song với mọi đường thẳng nằm trong mặt phẳng kia.
Đáp án C: sai, \(\left( \alpha \right)\) và \(\left( \beta \right)\) có thể cắt nhau theo giao tuyến song song với \(a\) và \(b\).
Đáp án D: đúng.
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ \begin{array}{l}{u_1} = - 3\\{u_n} = \dfrac{1}{2}{u_{n - 1}} + 1\end{array} \right.\) với \(n \in {\mathbb{N}^*},n \ge 2.\) Tìm số hạng \({u_4}.\)
Cho một đa giác đều có 32 đỉnh. Chọn ngẫu nhiên 3 đỉnh từ 32 đỉnh của đa giác đều. Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông, không cân là
Cho hình bình hành \(ABCD\). Phép tình tiến sau \({T_{\overrightarrow {DA} }}\) biến
Phép vị tự tâm O tỉ số \(k\left( {k \ne 0} \right)\) biến mỗi điểm \(M\) thành điểm \(M'\). Mệnh đề nào sau đây đúng?
Có 8 quả ổi và 6 quả xoài. Có bao nhiêu cách chọn ra một quả trong các quả ấy?
Trên giá sách có 10 quyến sách tiếng Việt khác nhau, 8 quyến sách tiếng Anh khác nhau, 6 quyển sách tiếng Pháp khác nhau. Số cách chọn ba quyển sách tiếng khác nhau là
Có 20 người tham gia một buổi tiệc, trong 20 người đó có 4 cặp vợ chồng. Ban tổ chức cần chọn 3 người tham gia một trò chơi. Có bao nhiêu cách chọn sao cho 3 người đó không có 2 người nào là vợ chồng?
Cho hình vuông \(ABCD\) tâm \(O\) có thứ tự như hình vẽ, gọi I là trung điểm BC. ảnh của điểm I qua phép quay tâm \(O\), góc quay \(90^\circ \) là
.jpg)
Khi gieo một đồng tiền (có hai mặt S,N) cân đối và đồng chất hai lần. Không gian mẫu của phép thử là
Trong các dãy số \(\left( {{u_n}} \right)\) xác định bởi số hạng tổng quát \({u_n}\) sau, hỏi dãy số nào là dãy số giảm ?
Trong mặt phẳng tọa độ \(Oxy\), phép vị tự tâm O tỉ số \( - 2\) biến điểm \(A\left( {1; - 3} \right)\) thành điểm \(A'\) có tọa độ là
Phương trình \({\cos ^2}x + 2\cos x - 3 = 0\) có nghiệm là
Cho khai triển:
\(\begin{array}{l}{\left( {2x - {y^2}} \right)^6} = 64C_6^0{x^6} - 32C_6^1{x^5}{y^2}\\ + 16C_6^2{x^4}{y^4} + ... + 4C_6^4{x^2}{y^8} \\- 2C_6^5x{y^{10}} + C_6^6{y^{12}}\end{array}\).
Số hạng trong dấu \(...\)là
Cho hình lăng trụ \(ABC.A'B'C'.\) Gọi \(H\) là trung điểm của \(A'B'.\) Hỏi đường thẳng \(B'C\) song song với mặt phẳng nào sau đây?
Cho hai đường thẳng phân biệt \(a,b\) và mặt phẳng \(\left( \alpha \right).\) Giả sử \(a//\left( \alpha \right),\,b \subset \left( \alpha \right).\) Khi đó:
