Một hộp có \(6\) viên bi xanh, \(4\) viên bi đỏ và \(5\) viên bi vàng. Chọn ngẫu nhiên \(5\) viên bi trong hộp, tính xác suất để \(5\) viên bi được chọn có đủ ba màu và số bi xanh bằng số bi vàng.
A. \(\dfrac{{40}}{{1001}}.\)
B. \(\dfrac{{240}}{{1001}}.\)
C. \(\dfrac{{200}}{{1001}}.\)
D. \(\dfrac{{702}}{{1001}}.\)
Lời giải của giáo viên
ToanVN.com
Chọn \(5\) viên bi trong hộp có \(C_{15}^5 = 3003\) cách chọn hay \(n\left( \Omega \right) = 3003\).
Gọi \(A\) là biến cố “\(5\) viên bi được chọn có đủ ba màu và số bi xanh bằng số bi vàng”
+ TH1: \(1\) xanh, \(1\) vàng và \(3\) đỏ, có \(C_6^1.C_5^1.C_4^3 = 120\) cách chọn.
+ TH2: \(2\) xanh, \(2\) vàng và \(1\) đỏ, có \(C_6^2.C_5^2.C_4^1 = 600\) cách chọn.
Do đó \(n\left( A \right) = 120 + 600 = 720\) cách chọn.
Xác suất \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega \right)}}\)\( = \dfrac{{720}}{{3003}} = \dfrac{{240}}{{1001}}\).
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ \begin{array}{l}{u_1} = - 3\\{u_n} = \dfrac{1}{2}{u_{n - 1}} + 1\end{array} \right.\) với \(n \in {\mathbb{N}^*},n \ge 2.\) Tìm số hạng \({u_4}.\)
Cho hình bình hành \(ABCD\). Phép tình tiến sau \({T_{\overrightarrow {DA} }}\) biến
Cho một đa giác đều có 32 đỉnh. Chọn ngẫu nhiên 3 đỉnh từ 32 đỉnh của đa giác đều. Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông, không cân là
Phép vị tự tâm O tỉ số \(k\left( {k \ne 0} \right)\) biến mỗi điểm \(M\) thành điểm \(M'\). Mệnh đề nào sau đây đúng?
Khi gieo một đồng tiền (có hai mặt S,N) cân đối và đồng chất hai lần. Không gian mẫu của phép thử là
Cho hình lăng trụ \(ABC.A'B'C'.\) Gọi \(H\) là trung điểm của \(A'B'.\) Hỏi đường thẳng \(B'C\) song song với mặt phẳng nào sau đây?
Trên giá sách có 10 quyến sách tiếng Việt khác nhau, 8 quyến sách tiếng Anh khác nhau, 6 quyển sách tiếng Pháp khác nhau. Số cách chọn ba quyển sách tiếng khác nhau là
Cho hình vuông \(ABCD\) tâm \(O\) có thứ tự như hình vẽ, gọi I là trung điểm BC. ảnh của điểm I qua phép quay tâm \(O\), góc quay \(90^\circ \) là
.jpg)
Trong các dãy số \(\left( {{u_n}} \right)\) xác định bởi số hạng tổng quát \({u_n}\) sau, hỏi dãy số nào là dãy số giảm ?
Có 20 người tham gia một buổi tiệc, trong 20 người đó có 4 cặp vợ chồng. Ban tổ chức cần chọn 3 người tham gia một trò chơi. Có bao nhiêu cách chọn sao cho 3 người đó không có 2 người nào là vợ chồng?
Có 8 quả ổi và 6 quả xoài. Có bao nhiêu cách chọn ra một quả trong các quả ấy?
Cho hai đường thẳng phân biệt \(a,b\) và mặt phẳng \(\left( \alpha \right).\) Giả sử \(a//\left( \alpha \right),\,b \subset \left( \alpha \right).\) Khi đó:
Phương trình \({\cos ^2}x + 2\cos x - 3 = 0\) có nghiệm là
Cho khai triển:
\(\begin{array}{l}{\left( {2x - {y^2}} \right)^6} = 64C_6^0{x^6} - 32C_6^1{x^5}{y^2}\\ + 16C_6^2{x^4}{y^4} + ... + 4C_6^4{x^2}{y^8} \\- 2C_6^5x{y^{10}} + C_6^6{y^{12}}\end{array}\).
Số hạng trong dấu \(...\)là
Trong mặt phẳng tọa độ \(Oxy\), phép vị tự tâm O tỉ số \( - 2\) biến điểm \(A\left( {1; - 3} \right)\) thành điểm \(A'\) có tọa độ là
