Đề thi giữa HK1 môn Toán 11 năm 2021-2022 - Trường THPT Trần Đại Nghĩa

Đề thi giữa HK1 môn Toán 11 năm 2021-2022 - Trường THPT Trần Đại Nghĩa

  • Hocon247

  • 40 câu hỏi

  • 60 phút

  • 40 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 263562

Lớp có 50 học sinh trong đó có 20 học sinh nữ. Chọn 3 bạn tham gia đội văn nghệ. Số cách chọn sao cho có ít nhất 1 bạn nam là:

Xem đáp án

Số cách chọn 3 bạn bất kì là: \(C_{50}^3\) cách.

Số cách chọn 3 bạn nữ là; \(C_{20}^3\) cách.

Vậy số cách chọn 3 bạn trong đó có ít nhất 1 bạn nam là: \(C_{50}^3 - C_{20}^3\) cách.

Chọn B.

Câu 2: Trắc nghiệm ID: 263563

Giá trị nhỏ nhất của hàm số \(y = 3\sin 2x - 2\) bằng:

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\,\, - 1 \le \sin 2x \le 1\\ \Leftrightarrow  - 3 \le 3\sin 2x \le 3\\ \Leftrightarrow  - 5 \le 3\sin 2x - 2 \le 1\\ \Leftrightarrow  - 5 \le y \le 1\end{array}\)

Vậy GTNN của hàm số bằng \( - 5\).

Chọn D.

Câu 3: Trắc nghiệm ID: 263564

Trong mặt phẳng, biết \({V_{\left( {O;k} \right)}}\left( M \right) = M'\). Chọn kết luận đúng.

Xem đáp án

Ta có: \({V_{\left( {O;k} \right)}}\left( M \right) = M' \Leftrightarrow \overrightarrow {OM'}  = k\overrightarrow {OM} .\)

Chọn B.

Câu 4: Trắc nghiệm ID: 263565

Tập nghiệm của phương trình \(\cos x =  - \dfrac{{\sqrt 3 }}{2}\) là:

Xem đáp án

Ta có: \(\cos x =  - \dfrac{{\sqrt 3 }}{2} = \cos \dfrac{{5\pi }}{6} \Leftrightarrow x =  \pm \dfrac{{5\pi }}{6} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Chọn A.

Câu 5: Trắc nghiệm ID: 263566

 Trong mặt phẳng tọa độ, cho \(M\left( { - 1;2} \right)\), \(k =  - \dfrac{1}{2}\), \({V_{\left( {O;k} \right)}}\left( M \right) = M'\), \(O\) là gốc tọa độ. Khi đó \(M'\) có tọa độ là:

Xem đáp án

Gọi \(M'\left( {x';y'} \right) = {V_{\left( {O; - \dfrac{1}{2}} \right)}}\left( M \right)\) ta có:

\(\begin{array}{l}\overrightarrow {OM'}  =  - \dfrac{1}{2}\overrightarrow {OM} \\ \Leftrightarrow \left\{ \begin{array}{l}x' - {x_O} =  - \dfrac{1}{2}\left( {{x_M} - {x_O}} \right)\\y' - {y_O} =  - \dfrac{1}{2}\left( {{y_M} - {y_O}} \right)\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x' =  - \dfrac{1}{2}.\left( { - 1} \right)\\y' =  - \dfrac{1}{2}.2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x' = \dfrac{1}{2}\\y' =  - 1\end{array} \right.\end{array}\)

Vậy \(M'\left( {\dfrac{1}{2}; - 1} \right)\).

Chọn C.

Câu 6: Trắc nghiệm ID: 263567

Tập xác định của hàm số \(y = \tan \left( {x - \dfrac{\pi }{3}} \right)\) là:

Xem đáp án

Hàm số \(y = \tan \left( {x - \dfrac{\pi }{3}} \right)\) xác định \( \Leftrightarrow x - \dfrac{\pi }{3} \ne \dfrac{\pi }{2} + k\pi  \Leftrightarrow x \ne \dfrac{{5\pi }}{6} + k\pi \).

Vậy TXĐ của hàm số là \(D = \mathbb{R}\backslash \left\{ {\dfrac{{5\pi }}{6} + k\pi ,\,\,k \in \mathbb{Z}} \right\}\).

Chọn C.

Câu 7: Trắc nghiệm ID: 263568

Nghiệm của phương trình \({\cos ^2}x - \cos x = 0\) thỏa mãn điều kiện \( - \pi  < x < 0\) là:

Xem đáp án

Ta có: \({\cos ^2}x - \cos x = 0 \Leftrightarrow \cos x\left( {\cos x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\cos x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} + k\pi \\x = \pi  + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

+ Xét họ nghiệm \(x = \dfrac{\pi }{2} + k\pi \).

Cho \( - \pi  < x < 0 \Leftrightarrow  - \pi  < \dfrac{\pi }{2} + k\pi  < 0 \Leftrightarrow  - \dfrac{3}{2} < k <  - \dfrac{1}{2}\).

Mà \(k \in \mathbb{Z} \Rightarrow k =  - 1 \Rightarrow x =  - \dfrac{\pi }{2}\).

+ Xét họ nghiệm \(x = \pi  + k2\pi \).

Cho \( - \pi  < \pi  + k2\pi  < 0 \Leftrightarrow  - 1 < k <  - \dfrac{1}{2}\).

Mà \(k \in \mathbb{Z} \Rightarrow k \in \emptyset \).

Vậy phương trình đã cho có duy nhất 1 nghiệm thỏa mãn là \(x =  - \dfrac{\pi }{2}\).

Chọn C.

Câu 8: Trắc nghiệm ID: 263569

Tập nghiệm của phương trình \(\sqrt 3 \sin x + \cos x = 0\) là:

Xem đáp án

Ta có:

\(\begin{array}{l}\sqrt 3 \sin x + \cos x = 0 \Leftrightarrow \sqrt 3 \sin x =  - \cos x\\ \Leftrightarrow \tan x =  - \dfrac{1}{{\sqrt 3 }} \Leftrightarrow x =  - \dfrac{\pi }{6} + k\pi \,\,\left( {k \in } \right)\end{array}\).

Chọn A.

Câu 9: Trắc nghiệm ID: 263570

Cho hình chóp \(S.ABCD\) có \(AC \cap BD = M\) và \(AB \cap CD = N\). Giao tuyến của mặt phẳng \(\left( {SAC} \right)\) và mặt phẳng \(\left( {SBD} \right)\) là đường thẳng

Xem đáp án

 

Xét \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) có:

+ \(S\) là điểm chung thứ nhất.

+ Trong \(\left( {ABCD} \right)\) ta có \(M = AC \cap BD \Rightarrow \left\{ \begin{array}{l}M \in AC \subset \left( {SAC} \right)\\M \in BD \subset \left( {SBD} \right)\end{array} \right.\) \( \Rightarrow M \in \left( {SAC} \right) \cap \left( {SBD} \right)\).

Vậy \(\left( {SAC} \right) \cap \left( {SBD} \right) = SM\).

Chọn A.

Câu 10: Trắc nghiệm ID: 263571

Trong mặt phẳng tọa độ, cho \(M\left( {1; - 2} \right)\), phép tịnh tiến theo vectơ \(\overrightarrow v \left( { - 3; - 3} \right)\) biến điểm \(M\) thành điểm \(M'\). Tọa độ điểm \(M'\) là:

Xem đáp án

Ta có: \({T_{\overrightarrow u }}\left( M \right) = M' \Rightarrow \overrightarrow {MM'}  = \overrightarrow u \)

 \( \Rightarrow \left\{ \begin{array}{l}{x_{M'}} = 1 + \left( { - 3} \right) =  - 2\\{y_{M'}} =  - 2 + \left( { - 3} \right) =  - 5\end{array} \right.\).

Vậy \(M'\left( { - 2; - 5} \right)\).

Chọn D.

Câu 11: Trắc nghiệm ID: 263572

Trên giá sách có 7 quyển sách Toán khác nhau, 5 quyển Vật lí khác nhau, 8 quyển sách Hóa học khác nhau. Số cách chọn 1 quyển sách để đọc là:

Xem đáp án

Số cách chọn 1 quyển sách Toán là 7 cách.

Số cách chọn 1 quyển sách Vật lí là 5 cách.

Số cách chọn 1 quyển sách Hóa là 8 cách.

Áp dụng quy tắc cộng: Số cách chọn 1 quyển sách bất kì là: \(7 + 5 + 8 = 20\) cách.

Chọn C.

Câu 12: Trắc nghiệm ID: 263573

Cho 5 chữ số 1, 2, 3, 5, 6. Lập các số tự nhiên gồm 3 chữ số đôi một khác nhau từ 5 chữ số đã cho. Tổng tất cả các số lập được bằng:

Xem đáp án

Từ 5 chữ số 1, 2, 3, 5, 6 ta lập được \(A_5^3 = 60\) số có 3 chữ số đôi một khác nhau.

Tổng các chữ số 1, 2, 3, 5, 6 là: \(1 + 2 + 3 + 5 + 6 = 17\).

Gọi số tự nhiên có 3 chữ số lập được là \(\overline {abc} \).

- Trong 60 số lập được ở trên, số lần xuất hiện của mỗi số 1, 2, 3, 5, 6 ở mỗi vị trí  \(a,\,\,b,\,\,c\) là \(A_4^2 = 12\) lần.

Chẳng hạn, số lần xuất hiện số 1 ở vị trí \(a\) bằng số cách chọn \(\overline {bc}\) từ 4 số \(2,3,5,6\) và bằng \(A_4^2 = 12\) lần, tương tự  số 1 xuất hiện ở vị trí \(b\) \(A_4^2 = 12\) lần, ở vị trí \(c\) là \(A_4^2 = 12\) lần. 

Vậy tổng của 60 số lập được là: \(12.(1+2+3+5+6).\left( {{{10}^2} + {{10}^1} + {{10}^0}} \right) = 22644\).

Chọn A.

Câu 13: Trắc nghiệm ID: 263574

Giải phương trình sau:  \(2\sin \left( {x - \dfrac{\pi }{6}} \right) - \sqrt 3  = 0\)  

Xem đáp án

\(2\sin \left( {x - \dfrac{\pi }{6}} \right) - \sqrt 3  = 0\)

\(\begin{array}{l} \Leftrightarrow \sin \left( {x - \dfrac{\pi }{6}} \right) = \dfrac{{\sqrt 3 }}{2}\\ \Leftrightarrow \left[ \begin{array}{l}x - \dfrac{\pi }{6} = \dfrac{\pi }{3} + k2\pi \\x - \dfrac{\pi }{6} = \dfrac{{2\pi }}{3} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} + k2\pi \\x = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy nghiệm của phương trình là \(x = \dfrac{\pi }{2} + k2\pi ,\,\,x = \dfrac{{5\pi }}{6} + k2\pi \).

Câu 14: Trắc nghiệm ID: 263575

Giải phương trình sau: \(\sin x - \sqrt 3 \cos x =  - \sqrt 2 \)

Xem đáp án

\(\sin x - \sqrt 3 \cos x =  - \sqrt 2 \)

\(\begin{array}{l} \Leftrightarrow \dfrac{1}{2}\sin x - \dfrac{{\sqrt 3 }}{2}\cos x =  - \dfrac{{\sqrt 2 }}{2}\\ \Leftrightarrow \sin x\cos \dfrac{\pi }{3} - \cos x\sin \dfrac{\pi }{3} =  - \dfrac{{\sqrt 2 }}{2}\\ \Leftrightarrow \sin \left( {x - \dfrac{\pi }{3}} \right) =  - \dfrac{{\sqrt 2 }}{2}\\ \Leftrightarrow \left[ \begin{array}{l}x - \dfrac{\pi }{3} =  - \dfrac{\pi }{4} + k2\pi \\x - \dfrac{\pi }{3} = \dfrac{{5\pi }}{4} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{{12}} + k2\pi \\x = \dfrac{{19\pi }}{{12}} + k2\pi \end{array} \right.\end{array}\)

Vậy nghiệm của phương trình là \(x = \dfrac{\pi }{{12}} + k2\pi ;\,\,x = \dfrac{{19\pi }}{{12}} + k2\pi \).

Câu 15: Trắc nghiệm ID: 263576

Lớp 11A có 15 học sinh nữ, 20 học sinh nam. Có bao nhiêu cách chọn 5 học sinh tham gia văn nghệ trong đó có ít nhất 3 học sinh nữ?

Xem đáp án

Để chọn được 5 học sinh tham gia văn nghệ trong đó có ít nhất 3 học sinh nữ ta có các TH sau:

TH1: 3 học sinh nữ, 2 học sinh nam \( \Rightarrow \) Có \(C_{15}^3.C_{20}^2 = 86450\).

TH2: 4 học sinh nữ, 1 học sinh nam \( \Rightarrow \) Có \(C_{15}^4.C_{20}^1 = 27300\).

TH3: 5 học sinh nữ \( \Rightarrow \) Có \(C_{15}^5 = 3003\).

Vậy có tất cả \(86450 + 27300 + 3003 = 116753\) cách.

Câu 16: Trắc nghiệm ID: 263577

Trong mặt phẳng \(Oxy\) , cho vectơ \(\overrightarrow v \left( {2; - 1} \right)\) và đường thẳng \(x + y - 3 = 0\). Viết phương trình đường thẳng \(d'\) là ảnh của đường thẳng \(d\) qua phép tịnh tiến theo \(\overrightarrow v \).

Xem đáp án

Vì \({T_{\overrightarrow v }}\left( d \right) = d' \Rightarrow d'//d\), do đó phương trình đường thẳng \(d'\) có dạng: \(d':\,\,x + y + c = 0\,\,\left( {c \ne  - 3} \right)\).

Lấy \(A\left( {3;0} \right) \in d\). Gọi \(A' = {T_{\overrightarrow v }}\left( A \right)\), khi đó ta có \(A'\left( {5; - 1} \right)\).

Vì \({T_{\overrightarrow v }}\left( d \right) = d',\,\,A' = {T_{\overrightarrow v }}\left( A \right) \Rightarrow A' \in d'\).

Suy ra \(5 + \left( { - 1} \right) + c = 0 \Leftrightarrow c + 4 = 0 \Leftrightarrow c =  - 4\,\,\left( {TM} \right)\).

Vậy phương trình đường thẳng \(d'\) là: \(x + y - 4 = 0\).

Câu 17: Trắc nghiệm ID: 263578

Hàm số nào sau đây là hàm số chẵn?

Xem đáp án

Xét đáp án A:

TXĐ: \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi } \right\}\) \( \Rightarrow \forall x \in D \Rightarrow  - x \in D\).

Ta có: \(f\left( { - x} \right) = 1 + \tan \left( { - x} \right) = 1 - \tan x \ne f\left( x \right)\)

\( \Rightarrow \) Hàm số \(f\left( x \right) = 1 + \tan x\) là hàm không chẵn, không lẻ.

Xét đáp án B:

TXĐ: \(D = \mathbb{R}\).

Ta có: \(f\left( { - x} \right) = {\left( { - x} \right)^2} + \cos \left( { - 3x} \right) = {x^2} + \cos \left( {3x} \right) = f\left( x \right)\).

\( \Rightarrow \) Hàm số \(f\left( x \right) = {x^2} + \cos \left( {3x} \right)\) là hàm chẵn.

Chọn B.

Câu 18: Trắc nghiệm ID: 263579

Hàm số nào sau đây có tập xác định là \(\mathbb{R}\)?

Xem đáp án

Xét đáp án B:

Vì \( - 1 \le \cos x \le 1\,\,\forall x \in \mathbb{R}\) \( \Leftrightarrow 1 \le 2 - \cos x \le 3\,\,\forall x \in \mathbb{R}\).

Do đó \(2 - \cos x \ne 0\,\,\forall x \in \mathbb{R}\).

Vậy hàm số \(y = \dfrac{1}{{2 - \cos x}}\) có TXĐ là \(\mathbb{R}\).

Chọn B.

Câu 19: Trắc nghiệm ID: 263580

Tìm \(a\) để phương trình \(\left( {a - 1} \right)\cos x = 1\) có nghiệm.

Xem đáp án

TH1: \(a - 1 = 0 \Leftrightarrow a = 1\), khi đó phương trình trở thành \(0.\cos x = 1\) (Vô nghiệm).

TH2: \(a - 1 \ne 0 \Leftrightarrow a \ne 1\), khi đó ta có \(\cos x = \dfrac{1}{{a - 1}}\,\,\left( {a \ne 1} \right)\).

Vì \( - 1 \le \cos x \le 1\,\,\forall x \in \mathbb{R}\) \( \Rightarrow  - 1 \le \dfrac{1}{{a - 1}} \le 1\,\,\forall x \in \mathbb{R}\).

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{{a - 1}} \ge  - 1\\\dfrac{1}{{a - 1}} \le 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{1 + a - 1}}{{a - 1}} \ge 0\\\dfrac{{1 - a + 1}}{{a - 1}} \le 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\dfrac{a}{{a - 1}} \ge 0\\\dfrac{{2 - a}}{{a - 1}} \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}a > 1\\a \le 0\end{array} \right.\\\left[ \begin{array}{l}a \ge 2\\a < 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a \ge 2\\a \le 0\end{array} \right.\,\,\left( {tm\,\,a \ne 1} \right)\end{array}\)

Vậy \(\left[ \begin{array}{l}a \ge 2\\a \le 0\end{array} \right.\).

Chọn B.

Câu 20: Trắc nghiệm ID: 263581

Cho hình chóp S.ABCD, I là trung điểm của SC, giao điểm của AI và (SBD) là :

Xem đáp án

 

Trong (ABCD) gọi \(O = AC \cap BD\).

Trong \(\left( {SAC} \right)\) gọi \(M = SO \cap AI\) ta có

\(M \in SO \subset \left( {SBD} \right) \Rightarrow M \in \left( {SBD} \right) \Rightarrow M = AI \cap \left( {SBD} \right)\) với \(O = AC \cap BD;{\mkern 1mu} {\mkern 1mu} M = SO \cap AI\).

Chọn B.

Câu 21: Trắc nghiệm ID: 263582

Nghiệm của phương trình \(\sin \left( {x + \dfrac{\pi }{6}} \right) = \dfrac{1}{2}\) là:

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\sin \left( {x + \dfrac{\pi }{6}} \right) = \dfrac{1}{2}\\ \Leftrightarrow \sin \left( {x + \dfrac{\pi }{6}} \right) = \sin \dfrac{\pi }{6}\\ \Leftrightarrow \left[ \begin{array}{l}x + \dfrac{\pi }{6} = \dfrac{\pi }{6} + k2\pi \\x + \dfrac{\pi }{6} = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = \dfrac{{2\pi }}{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Chọn B.

Câu 22: Trắc nghiệm ID: 263583

Nghiệm dương nhỏ nhất của phương trình \(\tan x =  - 1\) là:

Xem đáp án

Ta có: \(\tan x =  - 1 \Leftrightarrow x =  - \dfrac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

 Xét \(x > 0 \Leftrightarrow  - \dfrac{\pi }{4} + k\pi  > 0 \Leftrightarrow k > \dfrac{1}{4}\).

\( \Rightarrow \) Số nguyên \(k\) nhỏ nhất thỏa mãn điều kiện là \({k_{\min }} = 1\).

Vậy nghiệm dương nhỏ nhất của phương trình đã cho là \(x =  - \dfrac{\pi }{4} + \pi  = \dfrac{{3\pi }}{4}\).

Chọn C.

Câu 23: Trắc nghiệm ID: 263584

Khẳng định nào sau đây sai?

Xem đáp án

Đồ thị hàm số \(y = \cot x\):

 

\( \Rightarrow \) Hàm số  nghịch biến trên khoảng \(\left( {\dfrac{\pi }{2};\pi } \right)\) là khẳng định đúng.

Đồ thị hàm số \(y = \sin x\):

 

\( \Rightarrow \) Hàm số \(y = \sin x\) nghịch biến trên khoảng \(\left( {\dfrac{\pi }{2};\pi } \right)\) là mệnh đề ĐÚNG.

Đồ thị hàm số \(y = \cos x\):

 

\( \Rightarrow \) Hàm số \(y = \cos x\) đồng biến trên khoảng \(\left( {\dfrac{\pi }{3};\dfrac{\pi }{2}} \right)\) \( \Rightarrow \) Hàm số \(y =  - \cos x\) nghịch biến trên khoảng \(\left( {\dfrac{\pi }{3};\dfrac{\pi }{2}} \right)\). Do đó mệnh đề C sai.

Chọn C.

Câu 24: Trắc nghiệm ID: 263585

Nghiệm của phương trình \(\sin 2x - \sqrt 3 \sin x = 0\) là:

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\,\sin 2x - \sqrt 3 \sin x = 0\\ \Leftrightarrow 2\sin x\cos x - \sqrt 3 \sin x = 0\\ \Leftrightarrow \sin x\left( {2\cos x - \sqrt 3 } \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\cos x = \dfrac{{\sqrt 3 }}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x =  \pm \dfrac{\pi }{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Chọn C.

Câu 25: Trắc nghiệm ID: 263586

 Gọi \(a\) là nghiệm của phương trình \(2{\cos ^2}x + \cos x - 1 = 0\) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\). Tính \(\cos 2a\).

Xem đáp án

Ta có: \(2{\cos ^2}x + \cos x - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x = \dfrac{1}{2}\\\cos x =  - 1\end{array} \right.\).

Vì \(x \in \left( {0;\dfrac{\pi }{2}} \right) \Rightarrow \cos x > 0\), do đó \(\cos x = \dfrac{1}{2}\).

Vậy \(\cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\dfrac{1}{2}} \right)^2} - 1 =  - \dfrac{1}{2}\).

Chọn A.

Câu 26: Trắc nghiệm ID: 263587

Trong hệ trục tọa độ Oxy, cho \(\vec v\left( {3;3} \right)\) và đường tròn \(\left( C \right):{\mkern 1mu} {\mkern 1mu} {\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\). Tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của \(\left( C \right)\) qua phép tịnh tiến \({T_{\vec v}}.\)

Xem đáp án

Đường tròn (C): \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\)có tâm I(1;-2); bán kinh R=3.

Gọi I’ là tâm đường tròn (C’).

Phép tịnh tiến điểm I thành điểm I’ theo véc-tơ \(\vec v\left( {3;3} \right)\)thì \(\overrightarrow {II'} {\rm{\;}} = \vec v\)

Suy ra \(I'\left( {4;1} \right)\)

Đường tròn (C’) có tâm là \(I'\left( {4;1} \right)\); R=3 nên có dạng \({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} = 9\)

Chọn A.

Câu 27: Trắc nghiệm ID: 263588

Nghiệm của phương trình \(\sin x.\cos x.\left( {{{\sin }^2}x - {{\cos }^2}x} \right) = 0\) là:

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,\sin x.\cos x.\left( {{{\sin }^2}x - {{\cos }^2}x} \right) = 0\\ \Leftrightarrow  - \dfrac{1}{2}\sin 2x.\cos 2x = 0 \Leftrightarrow  - \dfrac{1}{4}\sin 4x = 0\\ \Leftrightarrow \sin 4x = 0 \Leftrightarrow x = \dfrac{{k\pi }}{4}\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Chọn D.

Câu 28: Trắc nghiệm ID: 263589

Cho các mệnh đề sai:

(1) Hàm số \(y = \sin x\) và \(y = \cos x\) cùng đồng biến trên khoảng \(\left( {\dfrac{{3\pi }}{2};2\pi } \right)\).

(2) Đồ thị hàm số \(y = 2019\sin x + 10\cos x\) cắt trục hoành tại vô số điểm.

(3) Đồ thị hàm số \(y = \tan x\) và \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) chỉ có một điểm chung.

(4) Với \( \in \left( {\pi ;\dfrac{{3\pi }}{2}} \right)\) các hàm số \(y = \tan \left( {\pi  - x} \right)\), \(y = \cot \left( {\pi  - x} \right)\), \(y = \sin \left( {\pi  - x} \right)\) đều nhận giá trị âm.

Trong các mệnh đề trên, số mệnh đề sai là:

Xem đáp án

Xét mệnh đề (1): Ta có đồ thị hàm số \(y = \sin x\) và \(y = \cos x\) như sau:

Đồ thị hàm số \(y = \sin x\):

 

Đồ thị hàm số \(y = \cos x\):

 

Hai hàm số này cùng đồng biến trên \(\left( {\dfrac{{3\pi }}{2};2\pi } \right)\). Do đó mệnh đề (1) đúng.

Xét mệnh đề (2): Phương trình hoành độ giao điểm: \(2019\sin x + 10\cos x = 0\) \( \Leftrightarrow \tan x =  - \dfrac{{10}}{{2019}}\).

Do đó phương trình này có vô số nghiệm, nên mệnh đề (2) đúng.

Xét mệnh đề (3): Phương trình hoành độ giao điểm:

\(\tan x = \cot x \Leftrightarrow \tan x = \dfrac{1}{{\tan x}}\)\( \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\tan x =  - 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\x =  - \dfrac{\pi }{4} + k\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\) .

+ Xét họ nghiệm \(x = \dfrac{\pi }{4} + k\pi \).

\(0 < \dfrac{\pi }{4} + k\pi  < \pi  \Leftrightarrow  - \dfrac{1}{4} < k < \dfrac{3}{4},\,\,k \in \mathbb{Z}\) \( \Rightarrow k = 0 \Rightarrow x = \dfrac{\pi }{4}\).

+ Xét họ nghiệm \(x =  - \dfrac{\pi }{4} + k\pi \).

\(0 <  - \dfrac{\pi }{4} + k\pi  < \pi  \Leftrightarrow \dfrac{1}{4} < k < \dfrac{5}{4},\,\,k \in \mathbb{Z}\) \( \Rightarrow k = 1 \Rightarrow x = \dfrac{{3\pi }}{4}\).

Vậy đồ thị hàm số \(y = \tan x\) và \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) có 2 điểm chung, do đó mệnh đề (3) sai.

Xét mệnh đề (4):

Ta có: \(\tan \left( {\pi  - x} \right) =  - \tan x,\,\,\cot \left( {\pi  - x} \right) =  - \cot x,\,\,\sin \left( {\pi  - x} \right) = \sin x\).

Trên khoảng \(\left( {\pi ;\dfrac{{3\pi }}{2}} \right)\) ta có: \(\left\{ \begin{array}{l}\tan x > 0 \Leftrightarrow  - \tan x < 0\\\cot x > 0 \Leftrightarrow  - \cot x < 0\\\sin x < 0\end{array} \right.\).

Do đó mệnh đề (4) đúng.

Vậy có 1 mệnh đề sai.

Chọn D.

Câu 29: Trắc nghiệm ID: 263590

Hàm số nào sau đây toàn hoàn với chu kì \(2\pi \)?

Xem đáp án

Hàm số \(y = \tan \left( {\dfrac{x}{2}} \right)\) tuần hoàn với chu kì \(T = \dfrac{\pi }{{\dfrac{1}{2}}} = 2\pi \).

Chọn A.

Câu 30: Trắc nghiệm ID: 263591

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là tứ giác lồi. Gọi \(O\)là giao điểm của \(AC\) và \(BD\), \(M\)là giao điểm của \(AB\) và \(CD\), \(N\)là giao điểm của \(AD\) và \(BC\). Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\)và \(\left( {SCD} \right)\)là?

Xem đáp án

Xét \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) có:

+ \(S\) là điểm chung thứ nhất.

+ \(M = AB \cap CD \Rightarrow \left\{ {\begin{array}{*{20}{l}}{M \in AB \subset \left( {SAB} \right) \Rightarrow M \in \left( {SAB} \right)}\\{M \in CD \subset \left( {SCD} \right) \Rightarrow M \in \left( {SCD} \right)}\end{array}} \right.\)

\( \Rightarrow M \in \left( {SAB} \right) \cap \left( {SCD} \right) \Rightarrow M\)  là điểm chung thứ hai.

Vậy \(\left( {SAB} \right) \cap \left( {SCD} \right) = SM\).

Chọn C.

Câu 31: Trắc nghiệm ID: 263592

Tìm số giá trị nguyên của \(m\) thuộc đoạn \(\left[ { - 2019;2019} \right]\) để phương trình sau có nghiệm \(2\sin 2x + \left( {m - 1} \right)\cos 2x = m + 1\)

Xem đáp án

Phương trình \(2\sin 2x + \left( {m - 1} \right)\cos 2x = m + 1\) có nghiệm khi và chỉ khi:

\(\begin{array}{l}\,\,\,\,\,{2^2} + {\left( {m - 1} \right)^2} \ge {\left( {m + 1} \right)^2}\\ \Leftrightarrow 4 + {m^2} - 2m + 1 \ge {m^2} + 2m + 1\\ \Leftrightarrow 4m \le 4 \Leftrightarrow m \le 1\end{array}\)

Kết hợp điều kiện \(m \in \left[ { - 2019;2019} \right] \Rightarrow m \in \left[ { - 2019;1} \right]\).

Vậy có 2021 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán.

Chọn A.

Câu 32: Trắc nghiệm ID: 263593

Tìm tập xác định của hàm số \(y = \dfrac{{\cot \left( {2x} \right)}}{{\cos \left( {2x} \right)}}\).

Xem đáp án

Hàm số \(y = \dfrac{{\cot \left( {2x} \right)}}{{\cos \left( {2x} \right)}}\) xác định \( \Leftrightarrow \left\{ \begin{array}{l}\sin 2x \ne 0\\\cos 2x \ne 0\end{array} \right. \Leftrightarrow \sin 4x \ne 0 \Leftrightarrow 4x \ne k\pi  \Leftrightarrow x \ne \dfrac{{k\pi }}{4}\).

Vậy TXĐ của hàm số là \(D = \mathbb{R}\backslash \left\{ {\dfrac{{k\pi }}{4};\,\,k \in \mathbb{Z}} \right\}\).

Câu 33: Trắc nghiệm ID: 263594

Giải phương trình \({\cos ^2}x - 3\sin x + 3 = 0\).

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,{\cos ^2}x - 3\sin x + 3 = 0\\ \Leftrightarrow 1 - {\sin ^2}x - 3\sin x + 3 = 0\\ \Leftrightarrow {\sin ^2}x + 3\sin x - 4 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 1\\\sin x =  - 4\,\,\left( {KTM} \right)\end{array} \right.\\ \Leftrightarrow x = \dfrac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy nghiệm của phương trình là \(x = \dfrac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Câu 34: Trắc nghiệm ID: 263595

Với những giá trị nào của \(x\) thì giá trị của các hàm số tương ứng sau bằng nhau \(y = \tan 3x\) và \(\tan (\dfrac{\pi }{3} - 2x)\)

Xem đáp án

Ta có: \(\tan 3x = \tan (\dfrac{\pi }{3} - 2x) \)\(\Leftrightarrow 3x = \dfrac{\pi }{3} - 2x + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow 5x = \dfrac{\pi }{3} + k\pi \left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow x = \dfrac{\pi }{{15}} + k\dfrac{\pi }{5}\;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án A.

Câu 35: Trắc nghiệm ID: 263596

Tìm m để phương trình \(\dfrac{{\cos x + 2\sin x + 3}}{{2\cos x - \sin x + 4}} = m\) có nghiệm.

Xem đáp án

Ta có: \(\dfrac{{\cos x + 2\sin x + 3}}{{2\cos x - \sin x + 4}} = m \)

\(\Leftrightarrow \cos x + 2\sin x + 3 = m\left( {2\cos x - \sin x + 4} \right)\)

\( \Leftrightarrow \left( {2m - 1} \right)\cos x - \left( {m + 2} \right)\sin x = 3 - 4m\)

Điều kiện có nghiệm: \({\left( {2m - 1} \right)^2} + {\left( {m + 2} \right)^2} \ge {\left( {3 - 4m} \right)^2}\)

\( \Leftrightarrow 4{m^2} - 4m + 1 + {m^2} + 4m + 4\)\( \ge 9 - 24m + 16{m^2}\)

\( \Leftrightarrow 11{m^2} - 24m + 4 \le 0 \)\(\Leftrightarrow \dfrac{2}{{11}} \le m \le 2.\)

Chọn đáp án D.

Câu 36: Trắc nghiệm ID: 263597

Nghiệm của phương trình  \(\sin x + \sqrt 3 \cos x = \sqrt 2 \) là:

Xem đáp án

Ta có:\(\sin x + \sqrt 3 \cos x = \sqrt 2 \)

\(\begin{array}{l}
\Leftrightarrow \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = \frac{{\sqrt 2 }}{2}\\
\Leftrightarrow \cos \frac{\pi }{3}\sin x + \sin \frac{\pi }{3}\cos x = \frac{{\sqrt 2 }}{2}
\end{array}\)

\( \Leftrightarrow \sin \left( {x + \dfrac{\pi }{3}} \right) = \dfrac{{\sqrt 2 }}{2}\)

\( \Leftrightarrow \sin \left( {x + \dfrac{\pi }{3}} \right) = \sin \dfrac{\pi }{4} \)\( \Leftrightarrow \left[ \begin{array}{l}x + \dfrac{\pi }{3} = \dfrac{\pi }{4} + k2\pi \\x + \dfrac{\pi }{3} = \pi  - \dfrac{\pi }{4} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x =  - \dfrac{\pi }{{12}} + k2\pi \\x = \dfrac{{5\pi }}{{12}} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án A.

Câu 37: Trắc nghiệm ID: 263598

Nghiệm dương bé nhất của phương trình \(2{\sin ^2}x + 5\sin x - 3 = 0\)  là:

Xem đáp án

Ta có: \(2{\sin ^2}x + 5\sin x - 3 = 0 \)\(\Leftrightarrow \left( {2\sin x - 1} \right)\left( {\sin x + 3} \right) = 0\)

\( \Leftrightarrow \sin x = \dfrac{1}{2} \)\(\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{5\pi }}{6} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

Nghiệm dương bé nhất của phương trình là \(x = \dfrac{\pi }{6}.\)

Chọn đáp án C.

Câu 38: Trắc nghiệm ID: 263599

Trong mặt phẳng Oxy, tìm ảnh của đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 5} \right)^2} = 5\) qua phép quay \({Q_{\left( {O,{{180}^0}} \right)}}\)

Xem đáp án

\(\left( C \right)\) có tâm \(I\left( {2; - 5} \right)\) bán kính \(R = \sqrt 5 \).

Gọi \(I' = {Q_{\left( {O;{{180}^0}} \right)}}\left( I \right)\) thì \(I'\) đối xứng với \(I\) qua \(O\)

\( \Rightarrow \left\{ \begin{array}{l}{x_{I'}} =  - {x_I} =  - 2\\{y_{I'}} =  - {y_I} = 5\end{array} \right. \Rightarrow I'\left( { - 2;5} \right)\)

Vậy \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y - 5} \right)^2} = 5\)

Đáp án B

Câu 39: Trắc nghiệm ID: 263600

Trong mp Oxy cho (C): \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 9\). Phép tịnh tiến theo \(\vec v\left( {3; - 2} \right)\) biến (C) thành đường tròn nào?

Xem đáp án

\(\left( C \right)\) có tâm \(I\left( {3; - 2} \right)\) và bán kính \(R = 3\).

\(\begin{array}{l}I' = {T_{\overrightarrow v }}\left( I \right) \Rightarrow \overrightarrow {II'}  = \overrightarrow v \\ \Rightarrow \left\{ \begin{array}{l}{x_{I'}} = {x_I} + 3 = 3 + 3 = 6\\{y_{I'}} = {y_I} - 2 =  - 2 - 2 =  - 4\end{array} \right.\\ \Rightarrow I'\left( {6; - 4} \right)\end{array}\)

Vậy \(\left( {C'} \right):{\left( {x - 6} \right)^2} + {\left( {y + 4} \right)^2} = 9\)

Đáp án C

Câu 40: Trắc nghiệm ID: 263601

Giả sử phép dời hình \(f\) biến tam giác \(ABC\) thành tam giác A’B’C’. Xét các mệnh đề sau:

(I): Trọng tâm tam giác ABC biến thành trọng tâm tam giác A’B’C’

(II): Trực tâm tam giác ABC biến thành trực tâm tam giác A’B’C’

(III): Tâm đường tròn ngoại tiếp, nội tiếp tam giác ABC lần lượt biến thành tâm đường tròn ngoại tiếp, nội tiếp tam giác A’B’C’.

Số mệnh đề đúng trong 3 mệnh đề trên là:

Xem đáp án

Sử dụng chú ý a trang 21 SGK hình học 11:

Nếu một phép dời hình biến tam giác ABC thành tam giác A’B’C’ thì nó cũng biến trọng tâm, trực tâm, tâm các đường tròn nội tiếp, ngoại tiếp của tam giác ABC tương ứng thành trọng tâm, trực tâm, tâm các đường tròn nội tiếp, ngoại tiếp của tam giác A’B’C’.

Vậy cả 3 mệnh đề đều đúng.

Đáp án A

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »