Lời giải của giáo viên
ToanVN.com
Để chọn được 5 học sinh tham gia văn nghệ trong đó có ít nhất 3 học sinh nữ ta có các TH sau:
TH1: 3 học sinh nữ, 2 học sinh nam \( \Rightarrow \) Có \(C_{15}^3.C_{20}^2 = 86450\).
TH2: 4 học sinh nữ, 1 học sinh nam \( \Rightarrow \) Có \(C_{15}^4.C_{20}^1 = 27300\).
TH3: 5 học sinh nữ \( \Rightarrow \) Có \(C_{15}^5 = 3003\).
Vậy có tất cả \(86450 + 27300 + 3003 = 116753\) cách.
CÂU HỎI CÙNG CHỦ ĐỀ
Tập nghiệm của phương trình \(\cos x = - \dfrac{{\sqrt 3 }}{2}\) là:
Tập xác định của hàm số \(y = \tan \left( {x - \dfrac{\pi }{3}} \right)\) là:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là tứ giác lồi. Gọi \(O\)là giao điểm của \(AC\) và \(BD\), \(M\)là giao điểm của \(AB\) và \(CD\), \(N\)là giao điểm của \(AD\) và \(BC\). Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\)và \(\left( {SCD} \right)\)là?
Tìm m để phương trình \(\dfrac{{\cos x + 2\sin x + 3}}{{2\cos x - \sin x + 4}} = m\) có nghiệm.
Tập nghiệm của phương trình \(\sqrt 3 \sin x + \cos x = 0\) là:
Trên giá sách có 7 quyển sách Toán khác nhau, 5 quyển Vật lí khác nhau, 8 quyển sách Hóa học khác nhau. Số cách chọn 1 quyển sách để đọc là:
Giá trị nhỏ nhất của hàm số \(y = 3\sin 2x - 2\) bằng:
Gọi \(a\) là nghiệm của phương trình \(2{\cos ^2}x + \cos x - 1 = 0\) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\). Tính \(\cos 2a\).
Trong mặt phẳng tọa độ, cho \(M\left( { - 1;2} \right)\), \(k = - \dfrac{1}{2}\), \({V_{\left( {O;k} \right)}}\left( M \right) = M'\), \(O\) là gốc tọa độ. Khi đó \(M'\) có tọa độ là:
Cho hình chóp \(S.ABCD\) có \(AC \cap BD = M\) và \(AB \cap CD = N\). Giao tuyến của mặt phẳng \(\left( {SAC} \right)\) và mặt phẳng \(\left( {SBD} \right)\) là đường thẳng
Trong hệ trục tọa độ Oxy, cho \(\vec v\left( {3;3} \right)\) và đường tròn \(\left( C \right):{\mkern 1mu} {\mkern 1mu} {\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\). Tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của \(\left( C \right)\) qua phép tịnh tiến \({T_{\vec v}}.\)
Giải phương trình sau: \(\sin x - \sqrt 3 \cos x = - \sqrt 2 \)
Nghiệm dương nhỏ nhất của phương trình \(\tan x = - 1\) là:
Tìm \(a\) để phương trình \(\left( {a - 1} \right)\cos x = 1\) có nghiệm.
