Trong các mệnh đề sau, mệnh đề nào sai?
lượt xem
Cho tứ diện \(ABCD.\) Gọi \(M,{\rm{ }}N,{\rm{ }}P,{\rm{ }}Q,{\rm{ }}R,{\rm{ }}S\) lần lượt là trung điểm của các cạnh \(AC,BD,AB,AD,BC,CD\). Bốn điểm nào sau đây đồng phẳng?
lượt xem
Cho hình chóp \(S.ABCD\). Gọi \(M,\,\,N,\,\,P,\,\,Q,\,\,R,\,\,T\) lần lượt là trung điểm \(AC\), \(BD\), \(BC\), \(CD\), \(SA\),\(SD\). Bốn điểm cho nào sau đây đồng phẳng?
lượt xem
Cho dãy số \(({u_n})\) xác định bởi \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 1}\\{{u_n} = 2{u_{n - 1}} + 3,\forall n \ge 2}\end{array}} \right.\). Viết năm số hạng đầu của dãy ?
lượt xem
Cho cấp số cộng \(({u_n})\)có \({u_2} + {u_3} = 20,{u_5} + {u_7} = - 29\). Tìm \({u_1},d\)?
lượt xem
Cho dãy số có các số hạng đầu là: \( - 2;0;2;4;6;....\)Số hạng tổng quát của dãy số này có dạng ?
lượt xem
Giá trị của \(\lim \dfrac{{4{n^2} + 3n + 1}}{{{{(3n - 1)}^2}}}\) bằng
lượt xem
Tính \(\mathop {\lim }\limits_{x \to + \infty } (x + 2)\sqrt {\dfrac{{x - 1}}{{{x^4} + {x^2} + 1}}} \)
lượt xem
Cho \(\lim \,{u_n} = L\). Chọn mệnh đề đúng:
lượt xem
Giá trị của \(\lim \dfrac{{1 - {n^2}}}{n}\) bằng:
lượt xem
Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Em hãy tìm mệnh đề đúng trong các mệnh đề sau:
lượt xem
Cho hình lập phương \(ABCD.EFGH\). Xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {DH} \).
lượt xem
Tìm hệ số góc \(k\) của tiếp tuyến của đồ thị sau \(y = {x^3} - 2{x^2} - 3x + 1\) tại điểm có hoành độ bằng 0.
lượt xem
Cho chuyển động thẳng xác định bởi phương trình là \(s = {t^3} - 3{t^2} - 9t + 2\) (t được tính bằng giây, s được tính bằng mét). Hãy tìm gia tốc khi \(t = 2s\).
lượt xem
Giải phương trình sau đây \(f''\left( x \right) = 0\), biết \(f\left( x \right) = {x^3} - 3{x^2}\).
lượt xem
Thực hiện tìm vi phân của hàm số sau \(y = {x^3}\).
lượt xem
Cho biết hàm số \(y = f\left( x \right)\) có đạo hàm trên tập số thực, biết rằng \(f\left( {3 - x} \right) = {x^2} + x\). Tính \(f'\left( 2 \right)\).
lượt xem
Cho hàm số \(y = \frac{{\sqrt {{x^2} + 2x + 3} }}{x}\) có đạo hàm \(y' = \frac{{ax + b}}{{{x^2}\sqrt {{x^2} + 2x + 3} }}\). Thực hiện tìm \(\max \left\{ {a,b} \right\}.\)
lượt xem
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(SA \bot \left( {ABC} \right)\), \(SA = a,\) \({\rm{ }}AC = 2a,\) \({\rm{ }}BC = a\sqrt 3 \). Góc giữa \(SC\) và \(\left( {ABC} \right)\) là
lượt xem
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\). Biết rằng \(SA = SC,\,SB = SD\). Hãy tìm khẳng định sai ?
lượt xem
Lập phương trình tiếp tuyến của đồ thị hàm số sau đây \(y = {x^2} + 3x + 1\) tại điểm có hoành độ bằng 1.
lượt xem
Cho hàm số \(y = \left( {1 + x} \right)\sqrt {1 - x} \) có đạo hàm \(y' = \frac{{ax + b}}{{2\sqrt {1 - x} }}\). Tính \(a + b.\)
lượt xem
Thực hiện tìm hệ số của \({x^2}\) trong khai triển \({\left( {{x^2} + x + 2} \right)^3}\) thành đa thức:
lượt xem
Tìm hệ số của x trong khai triển \({\left( {{x^2} + x + 2} \right)^2}\left( {x + 1} \right)\) thành đa thức:
lượt xem
Cho biết khoảng cách từ \(S\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng:
lượt xem
Giải bất phương trình \(f'\left( x \right) > 0\), biết \(f\left( x \right) = 2x + \sqrt {1 - {x^2}} .\)
lượt xem
Cho hàm số sau \(y = f\left( x \right)\) có đạo hàm trên tập số thực. Hãy tìm hệ thức đúng?
lượt xem
Cho hàm số là \(y = \sin x\). Hãy tính \(y''\left( 0 \right).\)
lượt xem
Cho hàm số \(y = f\left( x \right) = {x^2} + mx\) (m là tham số). Tìm giá trị m, biết \(f'\left( 1 \right) = 3\).
lượt xem
Tính đạo hàm của hàm số sau \(y = {\left( {{x^2} + x} \right)^2}\).
lượt xem
Tính đạo hàm của hàm số \(y = \sin 2x\).
lượt xem
Tính đạo hàm của hàm số cho sau: \(y = {x^2} + 1\).
lượt xem
Cho biết có tứ diện đều ABCD. Hãy tìm góc giữa hai đường thẳng AB và CD.
lượt xem
Cho biết hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(SD\) (tham khảo hình vẽ bên). Tang của góc giữa đường thẳng \(BM\) và mặt phẳng \(\left( {ABCD} \right)\) bằng:
lượt xem
Tứ diện \(OABC\) có \(OA,\,\,OB,\,\,OC\) đôi một vuông góc với nhau và \(OA = OB = OC = 1\). Gọi \(M\) là trung điểm của \(BC\) (tham khảo hình vẽ bên). Góc giữa hai đường thẳng \(OM\) và \(AB\) bằng:
.jpg)
lượt xem
Cho dãy số \({u_n},{v_n}\) thỏa \(\mathop {\lim }\limits_{} {u_n} = 2;\,\,\mathop {\lim }\limits_{} {v_n} = 1.\)Thực hiện tính \(\mathop {\lim }\limits_{} \left( {2{u_n} - 3{v_n}} \right).\)
lượt xem
Cho biết có dãy số \({u_n}\) thỏa \(\mathop {\lim }\limits_{} {u_n} = 2.\) Tính \(\mathop {\lim }\limits_{} \left( {{u_n} + \frac{{{2^n}}}{{{2^n} + 3}}} \right).\)
lượt xem
Tính: \(\mathop {\lim }\limits_{} \frac{{n + \sqrt {{n^2} + 1} }}{{n + 3}}.\)
lượt xem
Thực hiện tính: \(\mathop {\lim }\limits_{} \frac{{n + 1}}{{{n^2} + 2}}.\)
lượt xem
Cho biết mặt phẳng nào sau đây đây vuông góc với mặt phẳng \(\left( {SAB} \right)\)?
.jpg)
lượt xem
Biết \(\mathop {\lim }\limits_{x \to 2} f(x) = 3.\) Hãy tính \(\mathop {\lim }\limits_{x \to 2} \left[ {f\left( x \right) + x} \right].\)
lượt xem
Biết \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = m;\,\,\,\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = n.\) Tính \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) + g(x)} \right]\)
lượt xem
Tính giới hạn sau \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x + 2} - 2x}}{{x - 1}}\).
lượt xem
Tìm m để hàm số \(y = \left\{ \begin{array}{l}\frac{{{x^2} - 4}}{{x - 2}}\quad \quad x \ne 2\\m\quad \quad \quad \quad x = 2\end{array} \right.\) liên tục tại \(x = 2?\)
lượt xem
Biết \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x - m\sqrt {{x^2} + 2} }}{{x + 2}} = 2.\)Hãy tìm m.
lượt xem
Tính giới hạn sau \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x + 1}}{{x + 2}}.\)
lượt xem
Tính giới hạn sau \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x + \sqrt {{x^2} + 1} }}{{x + 2}}.\)
lượt xem
\(\mathop {\lim }\limits_{x \to 1} \frac{{x + \sqrt {{x^2} + 1} }}{{x + 1}} = a + b\sqrt 2 \,\,\left( {a,b \in \mathbb{Q}} \right).\) Hãy tính \(a + b\).
lượt xem
Tính giới hạn \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + x - 2}}{{x - 1}}.\)
lượt xem
Tính giới hạn \(\mathop {\lim }\limits_{x \to 2} \left( {x - 2} \right)\).
lượt xem