Đề thi HK1 môn Vật Lý 12 năm 2021-2022 - Trường THPT Lê Hồng Phong
Đề thi HK1 môn Vật Lý 12 năm 2021-2022 - Trường THPT Lê Hồng Phong
-
Hocon247
-
40 câu hỏi
-
60 phút
-
58 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Đoạn mạch RLC mắc nối tiếp, cuộn dây thuần cảm. Gọi UR, UL, UC lần lượt là điện áp hiệu dụng ở hai đầu điện trở, cuộn cảm và tụ điện. Biết UL = 2UR = 2UC. Kết luận nào dưới đây về độ lệch pha giữa điện áp và cường độ dòng điện là đúng?
Theo đề bài ta có UL = 2UR = 2UC
Từ giản đồ véc tơ thấy rằng u sớm pha hơn i một góc π/4
=> Chọn đáp án A
Cho đoạn mạch RLC mắc nối tiếp (L là cuộn dây thuần cảm). Điện áp hiệu dụng giữa hai bản tu điện UC = 160 V, hai đầu đoạn mạch U = 160 V. Điện áp trên tụ điện lệch pha so với điện áp hai đầu mạch là π/3. Điện áp hiệu dụng giữa hai đầu cuộn cảm là:
Từ giản đồ véc tơ trên ta thấy
+ ULC = U.cos(π/3) = U/2 = 80V
+ UL = UC – ULC = 160 – 80 = 80V
=> Chọn đáp án A
Đoạn mạch điện xoay chiều gồm điện trở thuần 30 (Ω) mắc nối tiếp với cuộn dây. Điện áp hiệu dụng ở hai đầu cuộn dây là 120 V. Dòng điện trong mạch lệch pha π/6 so với điện áp hai đầu đoạn mạch và lệch pha π/3 so với điện áp hai đầu cuộn dây. Cường độ hiệu dụng dòng qua mạch bằng
Tam giác AMB cân tại M
=> UR= MB=120V
=> I=UR/R = 120/30 = 4(A)
Chọn C
Cho các kết luận sau về sóng âm
(1) Sóng âm có tần số từ 16 Hz đến 20000 Hz gọi là âm nghe được (âm thanh)
(2)Trong mỗi môi trường đồng tính, âm truyền với tốc độ xác định. Sóng âm truyền lần lượt trong các môi trường rắn, lỏng, khí với tốc độ tăng dần. Sóng âm không truyền được trong chân không.
(3) Tần số, cường độ âm, mức cường độ âm, đồ thị dao động là các đặt trưng vật lí của âm. Độ cao, độ to, âm sắc là đặc trưng sinh lý của âm.
(4) Độ cao của âm gắn liền với tần số âm; độ to của âm gắn liền với mức cường độ âm; âm sắc có liên quan mật thiết với đồ thị dao động âm.
(5) Tần số dao động của nguồn âm cũng là tần số của sóng âm. Sóng âm không mang theo năng lượng.
Số kết luận đúng là
Các phát biểu đúng là
(1) Sóng âm có tần số từ 16 Hz đến 20000 Hz gọi là âm nghe được (âm thanh)
(3) Tần số, cường độ âm, mức cường độ âm, đồ thị dao động là các đặt trưng vật lí của âm. Độ cao, độ to, âm sắc là đặc trưng sinh lý của âm.
(4) Độ cao của âm gắn liền với tần số âm; độ to của âm gắn liền với mức cường độ âm; âm sắc có liên quan mật thiết với đồ thị dao động âm.
Như vậy số phát biểu đúng là 3
Chọn đáp án A
Khi mộ sóng âm truyền từ nước ra không khí thì
Khi sóng âm truyền từ nước ra không khí thì tần số của sóng là không đổi, vận tốc truyền sóng giảm nên bước sóng sẽ giảm.
Đáp án B
Để đo độ sâu vực sâu nhất thế giới Mariana ở Thái Bình Dương, người ta dùng phương pháp định vị hồi âm bằng sóng siêu âm. Sau khi phát ra siêu âm hướng xuống biển thì sau 14,53s người ta mới nhận được tín hiệu phản xạ của nó từ đáy biển. Vận tốc truyền của siêu âm trong nước biển là 1500m/s, trong không khí là 340m/s. Độ sâu vực Mariana là
Quãng đường sóng siêu âm đi được cho tới khi thu được tín hiệu bằng 2 lần độ sâu của rãnh
2d = vt = 1500.14,53 => d = 10897,5m
Chọn D
Chọn câu đúng : Chu kì dao động của con lắc lò xo là
Chu kì dao động của con lắc lò xo: \(T = 2\pi \sqrt {\dfrac{m}{k}} \)
Chọn D
Dao động tắt dần:
A – đúng
B, D – sai vì: Dao động tắt dần vừa có lợi vừa có hại
C – sai vì: Dao động tắt dần có biên độ giảm dần theo thời gian
Chọn A
Dao động tổng hợp của hai dao động điều hòa cùng phương có phương trình dao động lần lượt là \({x_1} = 4\sqrt 2 \,{\rm{cos}}\left( {10\pi t + \frac{\pi }{3}} \right)cm,\,\,{x_2} = 4\sqrt 2 \,{\rm{cos}}\left( {10\pi t - \frac{\pi }{6}} \right)cm\) có phương trình là:
Ta có: \(\left\{ \begin{array}{l}{x_1} = 4\sqrt 2 cos\left( {10\pi t + \dfrac{\pi }{3}} \right)cm\\{x_2} = 4\sqrt 2 cos\left( {10\pi t - \dfrac{\pi }{6}} \right)cm\end{array} \right.\).
+ Cách 1:
- Biên độ dao động tổng hợp:
\(\begin{array}{l}{A^2} = A_1^2 + A_2^2 + 2{A_1}{A_2}cos\left( {{\varphi _1} - {\varphi _2}} \right)\\ = {\left( {4\sqrt 2 } \right)^2} + {\left( {4\sqrt 2 } \right)^2} + 2.4\sqrt 2 .4\sqrt 2 .cos\left( {\dfrac{\pi }{3} - \left( { - \dfrac{\pi }{6}} \right)} \right)\\ = 64\\ \Rightarrow A = 8cm\end{array}\)
- Pha ban đầu của dao động tổng hợp:
\(\begin{array}{l}\tan \varphi = \dfrac{{{A_1}\sin {\varphi _1} + {A_2}\sin {\varphi _2}}}{{{A_1}cos{\varphi _1} + {A_2}cos{\varphi _2}}} = \\ = \dfrac{{4\sqrt 2 \sin \dfrac{\pi }{3} + 4\sqrt 2 \sin - \dfrac{\pi }{6}}}{{4\sqrt 2 cos\dfrac{\pi }{3} + 4\sqrt 2 cos - \dfrac{\pi }{6}}} = 2 - \sqrt 3 \\ \Rightarrow \varphi = {15^0} = \dfrac{\pi }{{12}}\end{array}\)
\( \Rightarrow \) Phương trình dao động tổng hợp: \(x = 8cos\left( {10\pi t + \dfrac{\pi }{{12}}} \right)cm\)
+ Cách 2:
\(\begin{array}{l}x = 4\sqrt 2 \angle \dfrac{\pi }{3} + 4\sqrt 2 \angle - \dfrac{\pi }{6} = 8\angle \dfrac{\pi }{{12}}\\ \Rightarrow x = 8cos\left( {10\pi t + \dfrac{\pi }{{12}}} \right)cm\end{array}\).
Chọn A
Dao động tổng hợp của hai dao động điều hòa cùng phương, cùng tần số, biên độ \({A_1}\) và \({A_2}\) có biên độ \(A\) thỏa mãn điều kiện nào là:
Ta có điều kiện của biên độ tổng hợp của hai dao động thành phần: \(\left| {{A_1} - {A_2}} \right| \le A \le {A_1} + {A_2}\)
Chọn D
Sóng âm khi truyền trong chất rắn có thể là sóng dọc hoặc sóng ngang và lan truyền với tốc độ khác nhau. Tại trung tâm phòng chống thiên tai nhận được hai tín hiệu từ một vụ động đất cách nhau một khoảng thời gian \(270s\). Hỏi tâm chấn động đất cách nơi nhận được tín hiệu bao xa? Biết tốc độ truyền sóng trong lòng đất với sóng ngang và sóng dọc lần lượt là \(5\,km/s\) và \(8\,\,km/s\).
Gọi:
- Khoảng cách từ tâm chấn động đến nơi nhận tín hiệu là \(S\)
- Thời gian nhận được tín hiệu thứ nhất (sóng ngang) là \({t_1}\)
- Thời gian nhận được tín hiệu thứ 2 (sóng dọc) là \({t_2}\)
Ta có:
+ Thời gian tín hiệu truyền đến trong lòng đất với sóng ngang là: \({t_1} = \dfrac{S}{{{v_1}}} = \dfrac{S}{5}\)
+ Thời gian tín hiệu truyền đến trong lòng đất với sóng dọc là: \({t_2} = \dfrac{S}{{{v_2}}} = \dfrac{S}{8}\)
Lại có:
\(\begin{array}{l}{t_2} - {t_1} = 270s\\ \Leftrightarrow \dfrac{S}{5} - \dfrac{S}{8} = 270\\ \Rightarrow S = 3600km\end{array}\)
Chọn D
Khoảng cách giữa hai điểm gần nhất trên cùng một phương truyền sóng dao động cùng pha là:
Khoảng cách giữa hai điểm gần nhất trên cùng một phương truyền sóng dao động cùng pha chính là một bước sóng \(\lambda \).
Chọn B
Đơn vị cường độ âm là:
Ta có: Cường độ âm I tại một điểm là đại lượng đo bằng năng lượng mà sóng âm tải qua một đơn vị diện tích đặt tại điểm đó, vuông góc với phương truyền sóng trong một đơn vị thời gian:
\(I = \dfrac{P}{S}\)
Đơn vị: \({\rm{W}}/{m^2}\)
Chọn B
Khi nói về dao động điều hòa, phát biểu nào sau đây là đúng?
A – đúng.
B – sai vì dao động của con lắc lò xo có thể là dao động tắt dần, duy trì, cưỡng bức, …
C – sai vì dao động của con lắc đơn có thể là dao động tắt dần, duy trì, cưỡng bức, …
D – sai vì cơ năng của vật dao động điều hòa tỉ lệ thuận với bình phương biên độ dao động.
Chọn A
Một vật dao động điều hòa dọc theo trục \(Ox\) với biên độ \(20mm\), tần số \(2Hz\). Tại thời điểm \(t = 0s\) vật đi qua vị trí có li độ \(1cm\) theo chiều âm. Phương trình dao động của vật là:
Ta có:
+ Biên độ dao động của vật: \(A = 20mm = 2cm\)
+ Tần số góc của dao động: \(\omega = 2\pi f = 2\pi .2 = 4\pi \left( {rad/s} \right)\)
+ Tại thời điểm ban đầu\(t = 0\),
\(\left\{ \begin{array}{l}{x_0} = Acos\varphi = 1cm\\v = - Asin\varphi < 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}cos\varphi = \dfrac{1}{2}\\\sin \varphi > 0\end{array} \right. \Rightarrow \varphi = \dfrac{\pi }{3}\)
+ Phương trình dao động của vật: \(x = 2cos\left( {4\pi t + \dfrac{\pi }{3}} \right)cm\)
Chọn B
Đặt điện áp \(u = {U_o}\cos \omega t\) (\({U_o}\) không đổi, \(\omega \) thay đổi được) vào hai đầu đoạn mạch gồm điện trở \(R\), cuộn cảm thuần có độ tự cảm \(L\) và tụ điện có điện dung \(C\) mắc nối tiếp. Tổng trở của mạch là
Ta có, tổng trở của mạch RLC mắc nối tiếp: \(Z = \sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} \)
Lại có: \(\left\{ \begin{array}{l}{Z_L} = \omega L\\{Z_C} = \dfrac{1}{{\omega C}}\end{array} \right.\).
\( \Rightarrow Z = \sqrt {{R^2} + {{\left( {\omega L - \dfrac{1}{{\omega C}}} \right)}^2}} \)
Chọn D
Trong một thí nghiệm về giao thoa sóng nước, hai nguồn sóng kết hợp được đặt tại \(A\) và \(B\) dao động theo phương trình \({u_A} = {u_B} = a\cos 30\pi t\) (\(a\) không đổi, \(t\) tính bằng \(s\)). Tốc độ truyền sóng trong nước là \(60cm/s\). Hai điểm \(P,Q\) nằm tren mặt nước có hiệu khoảng cách đến hai nguồn là \(PA - PB = 6cm,\,\,QA - QB = 12cm\). Kết luận về dao động của \(P,Q\) là
+ Tần số của sóng: \(f = \dfrac{\omega }{{2\pi }} = \dfrac{{30\pi }}{{2\pi }} = 15Hz\)
+ Bước sóng: \(\lambda = \dfrac{v}{f} = \dfrac{{60}}{{15}} = 4cm\)
+ Điểm P có: \(PA - PB = 6cm = \dfrac{3}{2}\lambda \)
\( \Rightarrow P\) thuộc cực tiểu số 2 tính từ trung trực AB đi ra
Điểm Q có: \(QA - QB = 12cm = 3\lambda \)
\( \Rightarrow Q\) thuộc cực đại số 3 tính từ trung trực AB đi ra
Chọn A
Trên một sợi dây đàn hồi dài \(1m\), hai đầu cố định, đang có sóng dừng với \(5\) nút sóng (kể cả hai đầu dây). Bước sóng của sóng truyền trên dây là:
Ta có:
Sóng dừng trên dây 2 đầu cố định: \(l = k\dfrac{\lambda }{2}\) (1)
Lại có 5 nút sóng \( \Rightarrow k = 5 - 1 = 4\)
Thay vào (1) ta được: \(1 = 4\dfrac{\lambda }{2} \Rightarrow \lambda = 0,5m\)
Chọn B
Một vật dao động điều hòa với biên độ \(A\) và chu kì \(T\). Trong khoảng thời gian \(\Delta t = 4T/3\), quãng đường lớn nhất \(\left( {{S_{\max }}} \right)\) mà vật đi được là:
Ta có: \(\Delta t = \dfrac{{4T}}{3} = T + \dfrac{T}{3}\)
\( \Rightarrow \) Quãng đường vật đi được: \(S = {S_T} + {S_{\max \left( {\dfrac{T}{3}} \right)}}\)
Ta có:
+ \({S_T} = 4A\)
+ Quãng đường lớn nhất vật đi được trong khoảng thời gian \(\dfrac{T}{3}\) : \({S_{max}} = 2A\sin \dfrac{{\Delta \varphi }}{2}\)
Ta có: \(\Delta \varphi = \omega \Delta t = \dfrac{{2\pi }}{T}.\dfrac{T}{3} = \dfrac{{2\pi }}{3}\)
\( \Rightarrow {S_{\max }} = 2A\sin \dfrac{{\dfrac{{2\pi }}{3}}}{2} = \sqrt 3 A\)
\( \Rightarrow \) Quãng đường lướn nhất mà vật đi được trong khoảng thời gian \(\Delta t = \dfrac{{4T}}{3}\) là: \(S = 4A + \sqrt 3 A\)
Chọn C
Con lắc lò xo treo thẳng đứng, lò xo có khối lượng không đáng kể. Hòn bi đang ở vị trí cân bằng thì được kéo xuống dưới theo phương thẳng đứng một đoạn \(3cm\) rồi thả nhẹ cho nó dao động. Hòn bi thực hiện \(50\) dao động mất \(20s\). Cho \(g = {\pi ^2} = 10m/{s^2}\). Tỉ số độ lớn lực đàn hồi cực đại và lực đàn hồi cực tiểu của lò xo \(\left( {\frac{{{F_{dh\max }}}}{{{F_{dh\min }}}}} \right)\) khi dao động là:
Ta có:
+ Biên độ dao động của vật: \(A = 3cm\)
+ Chu kì dao động của vật: \(T = \dfrac{{20}}{{50}} = 0,4s\)
+ Độ dãn của lò xo tại vị trí cân bằng: \(\Delta l = \dfrac{{mg}}{k} = \dfrac{{g{T^2}}}{{4{\pi ^2}}} = \dfrac{{10.0,{4^2}}}{{4.10}} = 0,04m = 4cm\)
Lực đàn hồi cực đại tại vị trí thấp nhất: \({F_{dhMax}} = k\left( {\Delta l + A} \right)\) (1)
Nhận thấy \(\Delta l > A\)
\( \Rightarrow {F_{dhMin}} = k\left( {\Delta l - A} \right)\) (2)
Từ (1) và (2), ta suy ra: \(\dfrac{{{F_{dhMax}}}}{{{F_{dhMin}}}} = \dfrac{{k\left( {\Delta l + A} \right)}}{{k\left( {\Delta l - A} \right)}} = \dfrac{{\Delta l + A}}{{\Delta l - A}} = \dfrac{{4 + 3}}{{4 - 3}} = 7\)
Chọn A
Trong bài thực hành đo gia tốc trọng trường của Trái Đất tại phòng thí nghiệm Vật lý Trường THPT Lê Hồng Phong. Bạn Thảo Lớp Toán K29 đo chiều dài con lắc đơn có kết quả là \(l = 100,00 \pm 1,00cm\) thì chu kì dao động \(T = 2,00 \pm 0,01s\). Lấy \({\pi ^2} = 9,87\). Gia tốc trọng trường tại đó là:
Ta có chu kì \(T = 2\pi \sqrt {\dfrac{l}{g}} \)
\( \Rightarrow \) Gia tốc rơi tự do: \(g = \dfrac{{4{\pi ^2}l}}{{{T^2}}}\)
+ Giá trị trung bình của gia tốc trọng trường: \(\overline g = \dfrac{{4{\pi ^2}\overline l }}{{{{\overline T }^2}}} = \dfrac{{4{\pi ^2}.1}}{{{2^2}}} = 9,87m/{s^2}\)
+ Sai số:
\(\begin{array}{l}\dfrac{{\Delta g}}{{\overline g }} = \dfrac{{\Delta l}}{{\overline l }} + 2\dfrac{{\Delta T}}{{\overline T }}\\ \Rightarrow \Delta g = \left( {\dfrac{{\Delta l}}{{\overline l }} + 2\dfrac{{\Delta T}}{{\overline T }}} \right)\overline g \\ = \left( {\dfrac{1}{{100}} + 2\dfrac{{0,01}}{2}} \right)9,87\\ = 0,1974 \approx 0,2m/{s^2}\end{array}\)
\( \Rightarrow g = \overline g \pm \Delta g = 9,87 \pm 0,2{\rm{ m/}}{{\rm{s}}^2}\)
Chọn C
Một chất điểm dao động điều hòa có vận tốc bằng không tại hai thời điểm liên tiếp \({t_1} = 2,2\,\left( s \right)\) và \({t_2} = 2,9\,\left( s \right)\). Tính từ thời điểm ban đầu (\({t_o} = 0\,s\)) đến thời điểm \({t_2}\) chất điểm đã đi qua vị trí cân bằng số lần là:
+ Ta có, vật có vận tốc bằng 0 khi ở vị trí biên
+ Khoảng thời gian giữa 2 lần liên tiếp vật có vận tốc bằng 0 là \(\dfrac{T}{2}\)
\(\begin{array}{l} \Rightarrow {t_2} - {t_1} = \dfrac{T}{2} \Leftrightarrow 2,9 - 2,2 = \dfrac{T}{2}\\ \Rightarrow T = 1,4s\end{array}\)
+ Khoảng thời gian từ \({t_0} = 0s\) đến \({t_2} = 2,9s\) là \(\Delta t = 2,9 - 0 = 2,9s = 2T + \dfrac{T}{{14}}\)
Trong 1 chu kì vật qua VTCB 2 lần
\( \Rightarrow \) Trong 2 chu kì vật qua VTCB 4 lần
Trong \(\dfrac{T}{{14}}\) vật qua VTCB 0 lần
\( \Rightarrow \) Trong khoảng thời gian từ \({t_0} = 0s\) đến \({t_2} = 2,9s\) vật qua VTCB 4 lần
Chọn B
Một vật có khối lượng \({m_1}\) treo vào một lò xo độ cứng \(k\) thì chu kì dao động là \({T_1} = 3\,\,s\). Thay vật \({m_1}\) bằng vật \({m_2}\) thì chu kì dao động \({T_2} = 2\,\,s\). Thay vật \({m_2}\) bằng vật có khối lượng \(\left( {2{m_1} + 4,5{m_2}} \right)\) thì chu kì dao động của con lắc là:
Ta có, chu kì \(T = 2\pi \sqrt {\dfrac{m}{k}} \)
+ Khi vật có khối lượng \({m_1}\) thì \({T_1} = 2\pi \sqrt {\dfrac{{{m_1}}}{k}} \)
+ Khi vật có khối lượng \({m_2}\) thì \({T_2} = 2\pi \sqrt {\dfrac{{{m_2}}}{k}} \)
Lại có \({T^2} \sim m\)
Khi thay bằng vât \({m_3} = 2{m_1} + 4,5{m_2}\) thì:
\(\begin{array}{l}T_3^2 = 2T_1^2 + 4,5T_2^2\\ \Rightarrow {T_3} = \sqrt {2T_1^2 + 4,5T_2^2} \\ = \sqrt {{{2.3}^2} + 4,{{5.2}^2}} = 6s\end{array}\)
Chọn D
Hai nguồn phát sóng kết hợp \(A\) và \(B\) trên mặt chất lỏng dao động theo phương trình : \({u_A} = {u_B} = A\cos \left( {100\pi t} \right)\). Tốc độ truyền sóng trên mặt chất lỏng \(1m/s\). \(I\) là trung điểm của \(AB\). \(M\) là điểm nằm trên đoạn \(AI,\,\,N\) là điểm nằm trên đoạn \(IB.\) Biết \(IM = 5cm\) và \(IN = 6,5cm\). Số điểm nằm trên đoạn \(MN\) có biên độ cực đại cùng pha với \(I\) là:
Ta có,
+ Bước sóng của sóng: \(\lambda = \dfrac{v}{f} = \dfrac{v}{{\dfrac{\omega }{{2\pi }}}} = \dfrac{1}{{\dfrac{{100\pi }}{{2\pi }}}} = 0,02m = 2cm\)
+ Xét điểm C trên AB cách I: \(IC = d\)
Ta có phương trình sóng tại C: \(\left\{ \begin{array}{l}{u_{AC}} = Acos\left( {100\pi t - \dfrac{{2\pi {d_1}}}{\lambda }} \right)\\{u_{BC}} = Acos\left( {100\pi t - \dfrac{{2\pi {d_2}}}{\lambda }} \right)\end{array} \right.\)
C là điểm dao động với biên độ cực đại khi \({d_1} - {d_2} = k\lambda \)
Ta có: \({d_1} - {d_2} = \left( {\dfrac{{AB}}{2} + d} \right) - \left( {\dfrac{{AB}}{2} - d} \right) = 2d = k\lambda \)
\( \Rightarrow d = k\dfrac{\lambda }{2} = k\dfrac{2}{2} = k\left( {cm} \right)\) với \(k = 0, \pm 1, \pm 2,...\)
Ta có:
\(\begin{array}{l} - 5 \le d \le 6,5\\ \Leftrightarrow - 5 \le k \le 6,5\\ \Rightarrow k = 6, \pm 5, \pm 4, \pm 3, \pm 2, \pm 1,0\end{array}\)
\( \Rightarrow \) Có 12 giá trị của k
\( \Rightarrow \) Trên MN có 12 điểm dao động với biên độ cực đại
Trung điểm I của AB là cực đại bậc 0 \(\left( {k = 0} \right)\)
Các điểm cực đại cùng pha với I cũng là chính là cùng pha với nguồn ứng với \(k = - 4, - 2,2,4,6\)
Vậy có 5 điểm dao động với biên độ cực đại và cùng pha với I
Chọn C
Hai vật dao động điều hòa dọc theo các trục song song với nhau. Phương trình dao động của các vật lần lượt là \({x_1} = {A_1}\cos \left( {{\omega _1}t + {\varphi _1}\,} \right)\,\,(cm)\) và \({x_2} = {A_2}\cos \left( {{\omega _2}t + {\varphi _2}\,} \right)\,\,(cm)\). Biết \(2{x_1}^2 + 3{x_2}^2 = 50\,\left( {c{m^2}} \right)\). Tại thời điểm \({t_1}\), vật thứ nhất đi qua vị trí có li độ \({x_1} = 1cm\) với vận tốc \({v_1} = 15cm/s\). Khi đó vật thứ hai có tốc độ bằng
Ta có: \(2x_1^2 + 3x_2^2 = 50\left( {c{m^2}} \right)\) (1)
+ Khi \(\left\{ \begin{array}{l}{x_1} = 1cm\\{v_1} = 15cm/s\end{array} \right.\) thay vào (1) ta được: \({2.1^2} + 3.x_2^2 = 50\)
\( \Rightarrow \left| {{x_2}} \right| = 4cm\)
Đạo hàm 2 vế của (1) ta được:
\(4{x_1}{x_1}' + 6{x_2}{x_2}' = 0\)
\( \Leftrightarrow 4{x_1}{v_1} + 6{x_2}{v_2} = 0\) (2)
Thay \(\left\{ \begin{array}{l}{x_1} = 1cm\\{v_1} = 15cm/s\end{array} \right.\) và \(\left| {{x_2}} \right| = 4cm\) vào (2) ta được \(\left| {{v_2}} \right| = 2,5cm/s\)
Chọn C
Dòng điện xoay chiều trong một đoạn mạch có cường độ là \(i = {I_0}cos\left( {\omega t + \varphi } \right)\,\left( {m > 0} \right).\)Đại lượng \(\omega \) được gọi là
\(i = {I_0}cos\left( {\omega t + \varphi } \right)\)
Trong đó: \(\omega \) là tần số góc của dòng điện
Chọn A
Điều kiện để hai sóng cơ khi gặp nhau, giao thoa được với nhau là hai sóng phải xuất phát từ hai nguồn dao động
Điều kiện để hai sóng cơ khi gặp nhau, giao thoa được với nhau là hai sóng phải xuất phát từ 2 nguồn dao động cùng tần số, cùng phương và có hiệu số pha không đổi theo thời gian.
Chọn A
Trên một sợi dây đang có sóng dừng, khoảng cách ngắn nhất giữa một nút và một bụng là \(2cm.\) Sóng truyền trên dây có bước sóng là
Ta có, khoảng cách ngắn nhất giữa một nút và một bụng: \(\dfrac{\lambda }{4} = 2cm \Rightarrow \lambda = 8cm\)
Chọn D
Đặt điện áp \(u = {U_0}\cos \left( {\omega t} \right)\) vào hai đầu điện trở R thì cường độ dòng điện chạy qua R là
Mạch chỉ có điện trở, u và i cùng pha với nhau
\(\begin{array}{l}u = {U_0}cos\left( {\omega t} \right)\\ \Rightarrow i = {I_0}cos\left( {\omega t} \right)\end{array}\)
Chọn A
Cho đoạn mạch gồm điện trở thuần R nối tiếp với tụ điện có điện dung C. Khi dòng điện xoay chiều có tần số góc \(\omega \) chạy quay qua thì tổng trở của đoạn mạch là
Ta có, mạch gồm điện trở thuần R nối tiếp với tụ C.
Tổng trở của mạch: \(Z = \sqrt {{R^2} + Z_C^2} = \sqrt {{R^2} + {{\left( {\dfrac{1}{{\omega C}}} \right)}^2}} \)
Chọn A
Đặt điện áp \(u = {U_0}\cos \left( {\omega t} \right)\) (với \({U_0}\) không đổi, \(\omega \) thay đổi) vao hai đầu đoạn mạch mắc nối tiếp gồm điện trở R, cuộn cảm thuần có độ tự cảm L và tụ điện có điện dung C, khi \(\omega = {\omega _0}\) thì trong mạch có cộng hưởng điện. Tần số góc \({\omega _0}\) là
Hiện tượng cộng hưởng xảy ra khi \({Z_L} = {Z_C}\)
Khi đó \({\omega _0} = \dfrac{1}{{\sqrt {LC} }}\)
Chọn C
Một vật dao động điều hòa với tần số góc \(\omega \). Khi vật ở vị trí có li độ x, gia tốc của vật là
Gia tốc của vật dao động điều hòa: \(a = - {\omega ^2}x\)
Chọn D
Tại một nơi trên mặt đất có \(g = 9,8m/{s^2},\)một con lắc đơn dao động điều hòa với chu kì 0,9 s, chiều dài của con lắc là
Ta có, chu kì dao động của con lắc đơn: \(T = 2\pi \sqrt {\dfrac{l}{g}} \)
\( \Rightarrow \) Chiều dài của con lắc: \(l = \dfrac{{{T^2}g}}{{4{\pi ^2}}} = \dfrac{{0,{9^2}.9,8}}{{4{\pi ^2}}} = 0,2m = 20cm\)
Chọn D
Một sóng cơ hình sin truyền dọc theo trục Ox. Quãng đường mà sóng truyền được trong một chu kì bằng
Quãng đường sóng truyền được trong một chu kì bằng một bước sóng.
Chọn D
Đặc trung nào sau đay là một đặc trưng vật lý của âm ?
A, B, D – đặc trưng sinh lí của âm
C – đặc trưng vật lí của âm
Chọn C
Một vật dao động điều hòa theo phương trình \(x = A\cos \left( {\omega t + \varphi } \right).\) Vận tốc của vật được tính bằng công thức
\(x = Acos\left( {\omega t + \varphi } \right)\)
Vận tốc của vật: \(v = x' = - A\omega \sin \left( {\omega t + \varphi } \right)\)
Chọn C
Khi một vật dao động điều hòa, chuyển động của vật từ vị trí biên về vị trí cân bằng là chuyển động
Vật dao động điều hòa chuyển động từ biên về vị trí cân bằng là chuyển động nhanh dần
Chọn A
Một con lắc lò xo gồm một vật nhỏ và lò xo nhẹ, đang dao động điều hòa trên mặt phẳng nằm ngang. Động năng của con lắc đạt giá trị cực tiểu khi
Động năng của vật: \({\rm{W = }}\dfrac{1}{2}m{v^2}\)
Động năng của ocn lắc cực tiểu khi vật qua vị trí biên (khi đó vận tốc của vật bằng 0)
Lại có:
+ Biên âm: Lò xo có chiều dài cực tiểu
+ Biên dương: Lò xo có chiều dài cực đại
Chọn C
Một con lắc lò xo gồm vật nhỏ có khối lượng m và lò xo nhẹ có độ cứng k. Con lắc dao động điều hòa với tần số góc là:
Tần số góc của con lắc lò xo dao động điều hòa: \(\omega = \sqrt {\dfrac{k}{m}} \)
Chọn B
Độ lớn lực tương tác giữa hai điện tích điểm \({q_1}\) và \({q_2}\) đặt cách nhau một khoảng \(r\) trong chân không được tính theo công thức
Lực tương tác giữa hai điện tích điểm \({q_1},{q_2}\) đặt trong chân không: \(F = k\dfrac{{\left| {{q_1}{q_2}} \right|}}{{{r^2}}}\)
Chọn A