Đề thi giữa HK1 môn Toán 11 năm 2021-2022 - Trường THPT Phan Bội Châu

Đề thi giữa HK1 môn Toán 11 năm 2021-2022 - Trường THPT Phan Bội Châu

  • Hocon247

  • 40 câu hỏi

  • 60 phút

  • 37 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 263602

Nghiệm của phương trình \(\sin 2x = \dfrac{{\sqrt 2 }}{2}\) là:

Xem đáp án

Ta có: \(\sin 2x = \dfrac{{\sqrt 2 }}{2} \Leftrightarrow \sin 2x = \sin \dfrac{\pi }{4}\)

\( \Leftrightarrow \left[ \begin{array}{l}2x = \dfrac{\pi }{4} + k2\pi \\2x = \pi  - \dfrac{\pi }{4} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

\(\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{8} + k\pi \\x = \dfrac{{3\pi }}{8} + k\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án D.

Câu 2: Trắc nghiệm ID: 263603

Giá trị nhỏ nhất m của hàm số \(y = 3\sin x + 1\) là.

Xem đáp án

Ta có: \(\sin x \in \left[ { - 1;1} \right] \)

\(\begin{array}{l}
\Rightarrow - 1 \le \sin x \le 1\\
\Rightarrow - 3 \le 3\sin x \le 3\\
\Rightarrow - 2 \le 3\sin x + 1 \le 4
\end{array}\)

Chọn đáp án B.

Câu 3: Trắc nghiệm ID: 263604

Tập xác định của hàm số \(y = f(x) = \dfrac{1}{{\sqrt {1 - sinx} }}\)

Xem đáp án

Ta có: \(\sin x \in \left[ { - 1;1} \right] \Rightarrow 1 - \sin x \in \left[ {0;2} \right]\)

Điều kiện xác định: \(1 - \sin x \ne 0 \Leftrightarrow \sin x \ne 1 \)

\(\Leftrightarrow x \ne \dfrac{\pi }{2} + k2\pi  \;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án C.

Câu 4: Trắc nghiệm ID: 263605

Giá trị nhỏ nhất của hàm số \(y = {\sin ^2}x - 4\sin x - 5\) là:

Xem đáp án

Ta có: \(y = {\sin ^2}x - 4\sin x - 5 \)\(= \left( {{{\sin }^2}x - 4\sin x + 4} \right) - 9 \)\(= {\left( {\sin x - 2} \right)^2} - 9\)

+ \(\sin x \in \left[ { - 1;1} \right] \Rightarrow \sin x - 2 \in \left[ { - 3; - 1} \right] \)

\(\Leftrightarrow {\left( {\sin x - 2} \right)^2} \in \left[ {1;9} \right]\)

Khi đó \(y \ge 1 - 9 =  - 8\)

Chọn đáp án D.

Câu 5: Trắc nghiệm ID: 263606

Tính chất nào sau đây không phải là tính chất của phép dời hình?

Xem đáp án

Phép dời hình biến đoạn thẳng thành đoạn thẳng bằng nó nên A sai.

Đáp án A

Câu 6: Trắc nghiệm ID: 263607

Trong mặt phẳng tọa độ Oxy cho đường thẳng \(d:x - 2y - 5 = 0.\) Ảnh của đường thẳng \(d:x - 2y - 5 = 0\) qua phép quay tâm O góc \(\frac{\pi }{2}\) có phương trình:

Xem đáp án

Lấy \(A\left( {5;0} \right) \in d\), gọi \(A' = {Q_{\left( {O,\frac{\pi }{2}} \right)}}\left( A \right)\) thì \(A'\left( {0;5} \right)\).

Ta có: \(\overrightarrow {{n_d}}  = \left( {1; - 2} \right)\), mà \(d' \bot d\)\( \Rightarrow \overrightarrow {{n_{d'}}}  = \left( {2;1} \right)\).

Vậy \(d':2\left( {x - 0} \right) + 1\left( {y - 5} \right) = 0\) \( \Leftrightarrow 2x + y - 5 = 0\)

Đáp án A

Câu 8: Trắc nghiệm ID: 263609

Cho các chữ số 1, 2, 3, …,9. Từ các số đó có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau và không vượt quá 2011.

Xem đáp án

Một số gồm 4 chữ số phân biệt lập thành từ các chữ số A={1; 2; 3; …; 9} có dạng:

\(\overline {{a_1}{a_2}{a_3}{a_4}} \), với \({a_i} \in A,i = \overline {1,4} \)và \({a_i} \ne {a_j},i \ne j.\)

Do \(\overline {{a_1}{a_2}{a_3}{a_4}} \) không vượt quá 2011 nên \({a_1} = 1\)- có 1 cách chọn.

Mặt khác, \(\overline {{a_1}{a_2}{a_3}{a_4}} \) là số chẵn nên \({a_4} \in \left\{ {2;4;6;8} \right\}\) - có \(C_4^1\) cách chọn.

Khi đó,\({a_3}\) - có \(C_7^1\) cách chọn.

            \({a_2}\) - có \(C_6^1\) cách chọn.

Số cách chọn là \(1.C_4^1.C_7^1.C_6^1 = 168\)

Chọn A.

Câu 9: Trắc nghiệm ID: 263610

Trong khai triển \({\left( {2x - 1} \right)^{10}}\), hệ số của số hạng chứa \({x^8}\) là:

Xem đáp án

Ta có

\(\begin{array}{c}{\left( {2x - 1} \right)^{10}} = C_{10}^0{\left( {2x} \right)^{10}} + C_{10}^1{\left( {2x} \right)^9}\left( { - 1} \right) + ... + C_{10}^{10}{\left( { - 1} \right)^{10}}\\ = C_{10}^0{2^{10}}{x^{10}} + C_{10}^1{2^9}{x^9}\left( { - 1} \right) + C_{10}^2{2^8}{\left( { - 1} \right)^2}{x^8} + ... + C_{10}^{10}{\left( { - 1} \right)^{10}}\end{array}\)

Do đó hệ số của số hạng chứa x8 là \(C_{10}^2{2^8}{\left( { - 1} \right)^2} = 11520\)

Chọn D.

Câu 10: Trắc nghiệm ID: 263611

Một liên đoàn bóng đá có 10 đội, mỗi đội phải đá 4 trận với mỗi đội khác, 2 trận sân nhà và 2 trận sân khách. Số trận đấu được sắp xếp là:

Xem đáp án

Cứ 2 đội nếu đá 2 trận lượt đi và 2 trận lượt về sẽ có 4 trận đấu diễn ra.

Vậy số trận đấu được sắp xếp khi có 10 đội là \(4.C_{10}^2 = 180\)

Chọn A.

Câu 11: Trắc nghiệm ID: 263612

Đồ thị hàm số nào dưới đây nhận trục tung làm trục đối xứng?

Xem đáp án

Đồ thị hàm số chẵn nhận trục tung làm trục đối xứng, do đó ta kiểm tra hàm số chẵn ở mỗi đáp án.

Dễ thấy hàm số \(y =  - 2\cos x\) là hàm chẵn nên nhận trục tung làm trục đối xứng.

Chọn đáp án D.

Câu 12: Trắc nghiệm ID: 263613

Nghiệm của phương trình \(2{\sin ^2}x + \sin x\cos x - 3{\cos ^2}x = 0\) là:

Xem đáp án

Ta có: \(2{\sin ^2}x + \sin x\cos x - 3{\cos ^2}x = 0 \)

\(\Leftrightarrow \left( {\sin x - \cos x} \right)\left( {2\sin x + 3\cos x} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\sin x = \cos x\\2\sin x =  - 3\cos x\end{array} \right. \\ \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\tan x =  - \dfrac{3}{2}\end{array} \right. \\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\x = \arctan \left( { - \dfrac{3}{2}} \right) + k\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án A.

Câu 13: Trắc nghiệm ID: 263614

Cho hai đường thẳng song song \({d_1}:2x - y + 6 = 0;\)\({d_2}:2x - y + 4 = 0\). Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {a;\,b} \right)\) biến đường thẳng \({d_1}\) thành đường thẳng \({d_2}\). Tính \(2a - b\)

Xem đáp án

Lấy M(x;y)\( \in {d_1}\) thì \(2x - y + 6 = 0\)

\(M' = {T_{\overrightarrow v }}\left( M \right)\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_{M'}} = x + a\\{y_{M'}} = y + b\end{array} \right.\) \( \Rightarrow M'\left( {x + a;y + b} \right)\)

\(M' \in {d_2}\) \( \Leftrightarrow 2\left( {x + a} \right) - \left( {y + b} \right) + 4 = 0\)

\(\begin{array}{l} \Leftrightarrow 2x + 2a - y - b + 4 = 0\\ \Leftrightarrow \left( {2x - y + 6} \right) + \left( {2a - b - 2} \right) = 0\\ \Leftrightarrow 0 + \left( {2a - b - 2} \right) = 0\\ \Leftrightarrow 2a - b - 2 = 0\\ \Leftrightarrow 2a - b = 2\end{array}\)

Đáp án C

Câu 14: Trắc nghiệm ID: 263615

Cho tam giác ABC vuông tại A có đường cao AH, biết AB = 3; AC = 4. Phép dời hình biến A thành A’, biến H thành H’. Khi đó độ dài đoạn A’H’ bằng:

Xem đáp án

Theo Pitago ta có: \(BC = \sqrt {A{B^2} + A{C^2}} \) \( = \sqrt {{3^2} + {4^2}}  = 5\)

Lại có \(AH.BC = AB.AC\) \( \Rightarrow AH = \frac{{AB.AC}}{{BC}} = \frac{{3.4}}{5} = \frac{{12}}{5}\)

Phép dời hình biến tam giác ABC thành tam giác A’B’C’ nên đường cao \(A'H' = AH = \frac{{12}}{5}\).

Đáp án C

Câu 15: Trắc nghiệm ID: 263616

Một hộp đựng 4 bi xanh và 6 bi đỏ. Lần lượt rút 2 viên bi. Xác suất để rút được một bi xanh và 1 bi đỏ là:

Xem đáp án

Số cách lấy ra lần lượt 2 bi từ hộp là \(C_{10}^1.C_9^1 = 90 \Rightarrow n\left( \Omega  \right) = 90.\)

Số cách lấy ra lần lượt 1 bi xanh và 1 bi đỏ là \(C_4^1.C_6^1 = 24 \Rightarrow n\left( A \right) = 24.\)

Xác suất để lấy ra 1 bi xanh và 1 bi đỏ là \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \dfrac{{24}}{{90}} = \dfrac{4}{{15}}\)

Chọn D.

Câu 16: Trắc nghiệm ID: 263617

Phương trình lượng giác nào dưới đây có nghiệm là: \(x = \dfrac{\pi }{6} + k\pi ,k \in \mathbb{Z}.\)

Xem đáp án

Ta có: \(\cot x = \sqrt 3  \Leftrightarrow x = \dfrac{\pi }{6} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án B.

Câu 17: Trắc nghiệm ID: 263618

Giá trị lớn nhất M của hàm số \(y = \sin x + \cos x\) là.

Xem đáp án

Ta có: \(y = \sin x + \cos x = \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right) \)

\(\begin{array}{l}
- 1 \le \sin \left( {x + \frac{\pi }{4}} \right) \le 1\\
\Rightarrow - \sqrt 2 \le \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) \le \sqrt 2
\end{array}\)

\(\Rightarrow y \in \left[ { - \sqrt 2 ;\sqrt 2 } \right]\)

Chọn đáp án D.

Câu 18: Trắc nghiệm ID: 263619

Phép biến hình nào dưới đây không phải là phép dời hình?

Xem đáp án

Trong các phép biến hình đã cho chỉ có phép vị tự với tỉ số \(k \ne  \pm 1\) không là phép dời hình.

Đáp án D

Câu 19: Trắc nghiệm ID: 263620

Trong mặt phẳng tọa độ \(Oxy\), cho hai đường thẳng \(d:x + 3y - 4 = 0\) và \(d':x + 3y - 11 = 0\). Biết rằng phép tịnh tiến theo vectơ \(\overrightarrow v \) biến \(d\) thành \(d'\). Phương án nào dưới đây đúng?

Xem đáp án

Gọi \(\overrightarrow v  = \left( {a;b} \right)\), lấy \(M\left( {x;y} \right) \in d\) thì \(x + 3y - 4 = 0\).

\(M' = {T_{\overrightarrow v }}\left( M \right)\) \( \Rightarrow \left\{ \begin{array}{l}{x_{M'}} = x + a\\{y_{M'}} = y + b\end{array} \right.\) \( \Rightarrow M'\left( {x + a;y + b} \right)\)

\(M' \in d'\) \( \Leftrightarrow \left( {x + a} \right) + 3\left( {y + b} \right) - 11 = 0\)

\(\begin{array}{l} \Leftrightarrow x + a + 3y + 3b - 11 = 0\\ \Leftrightarrow \left( {x + 3y - 4} \right) + \left( {a + 3b - 7} \right) = 0\\ \Leftrightarrow 0 + \left( {a + 3b - 7} \right) = 0\\ \Leftrightarrow a + 3b - 7 = 0\\ \Leftrightarrow a + 3b = 7\end{array}\)

Đối chiếu các đáp án chỉ có D đúng.

Đáp án D

Câu 20: Trắc nghiệm ID: 263621

Có 3 học sinh nữ và 2 học sinh nam. Ta muốn sắp xếp vào một bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách sắp xếp để 2 học sinh nam ngồi kề nhau:

Xem đáp án

Vì để 2 bạn học sinh nam ngồi gần nhau nên ta coi sắp xếp này là 1 chỗ ngồi. Cùng với 3 học sinh nữ ta có 4 chỗ.

Nên có 4! cách xếp chỗ.

Mà trong 2 học sinh nam có 2! cách sắp.

Vậy ta có 4!.2! = 48 cách sắp.

Chọn A.

Câu 21: Trắc nghiệm ID: 263622

Đội thanh niên xung kích của một trường phổ thông có 12 học sinh gồm 5 học sinh lớp A, 4 học sinh lớp B và 3 học sinh lớp C. Cần chọn 4 học sinh đi làm nhiệm vụ sao cho 4 học sinh này không thuộc quá 2 trong 3 lớp trên. Hỏi có bao nhiêu cách chọn như vậy:

Xem đáp án

Gọi A là tập hợp cách chọn 4 học sinh trong 12 học sinh.

Gọi B là tập hợp cách chọn 4 số học sinh mà mỗi lớp có ít nhất một em.

Gọi C là tập hợp cách chọn thỏa mãn yêu cầu đề bài.

Khi đó \(A = B \cup C;B \cap C = \emptyset .\)

Theo quy tắc cộng ta có: \(n\left( A \right) = n\left( B \right) + n\left( C \right) \Rightarrow n\left( C \right) = n\left( A \right) - n\left( B \right)\)

Ta có \(n\left( A \right) = C_{12}^4 = 495\)

Để tính n(B), ta nhận thấy sẽ chọn mỗi lớp 2 học sinh, còn 2 lớp còn lại mỗi lớp 1 học sinh.

Vì thế theo quy tắc cộng và phép nhân, ta có

\(n\left( B \right) \)\(= C_5^2C_4^1C_3^1 + C_5^1C_4^2C_3^1 + C_5^1C_4^1C_3^2 \)

\(= 120 + 90 + 60 = 270\)

\( \Rightarrow n\left( C \right) = n\left( A \right) - n\left( B \right) = 495 - 270 = 225\)

Chọn C.

Câu 22: Trắc nghiệm ID: 263623

Nghiệm của phương trình \(\sin x = \cos x\) là:

Xem đáp án

Ta có: \(\sin x = \cos x \Leftrightarrow \tan x = 1 \)

\(\Leftrightarrow x = \dfrac{\pi }{4} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án B.

Câu 23: Trắc nghiệm ID: 263624

Đồ thì hình bên là đồ thị của hàm số nào?

Xem đáp án

Đồ thị hình bên là của hàm số \(y = \cos x\)

Chọn đáp án D.

Câu 24: Trắc nghiệm ID: 263625

Phép vị tự \({V_{(O;k)}}\) biến M thành M’. Khẳng định nào sau đây là đúng?

Xem đáp án

Nếu \(k < 0\) thì \(\overrightarrow {MO} \) và \(\overrightarrow {MM'} \) cùng hướng (hình vẽ).

Đáp án A

Câu 25: Trắc nghiệm ID: 263626

Rút một lá bài từ bộ bài gồm 52 lá. Xác suất để được lá 10 hay lá át là

Xem đáp án

Ta có \(n\left( \Omega  \right) = C_{52}^1 = 52.\)

Số cách rút để được lá 10 hay lá át là \(n\left( A \right) = C_8^1 = 8.\)

Xác suất cần có là: \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \dfrac{8}{{52}} = \dfrac{2}{{13}}\)

Chọn A.

Câu 27: Trắc nghiệm ID: 263628

Một đội văn nghệ có 15 người gồm 10 nam và 5 nữ. Hỏi có bao nhiêu cách lập một nhóm đồng ca gồm 8 người, biết rằng nhóm đó có ít nhất 3 nữ:

Xem đáp án

Số cách chọn nhóm đồng ca có 3 nữ là: \(C_5^3.C_{10}^5 = 2520.\)

Số cách chọn nhóm đồng ca có 4 nữ là: \(C_5^4.C_{10}^4 = 1050.\)

Số cách chọn nhóm đồng ca có 5 nữ là: \(C_5^5.C_{10}^3 = 120.\)

Vậy số cách chọn nhóm đồng ca có ít nhất 3 nữ là: \(2520 + 1050 + 120 = 3690\)

Chọn A.

Câu 28: Trắc nghiệm ID: 263629

Trong mặt phẳng \(Oxy\), cho điểm \(A\left( {3; - 5} \right)\). Tìm tọa độ ảnh \(A'\) của điểm \(A\) qua phép quay \({Q_{\left( {O;\frac{\pi }{2}} \right)}}\).

Xem đáp án

\(A' = {Q_{\left( {O;\frac{\pi }{2}} \right)}}\left( A \right)\) \( \Rightarrow \left\{ \begin{array}{l}{x_{A'}} =  - {y_A} = 5\\{y_{A'}} = {x_A} = 3\end{array} \right. \Rightarrow A'\left( {5;3} \right)\)

Đáp án B

Câu 29: Trắc nghiệm ID: 263630

Cho \(\Delta ABC\) đều cạnh 2. Qua ba phép đồng dạng liên tiếp: Phép tịnh tiến \({T_{\overrightarrow {BC} }}\), phép quay \(Q\left( {B,\,{{60}^o}} \right)\), phép vị tự \({V_{\left( {A,\,3} \right)}}\), \(\Delta ABC\) biến thành \(\Delta {A_1}{B_1}{C_1}\). Diện tích \(\Delta {A_1}{B_1}{C_1}\) là:

Xem đáp án

Tam giác ABC đều cạnh 2 nên có diện tích \({S_{ABC}} = \frac{{{2^2}.\sqrt 3 }}{4} = \sqrt 3 \).

Tam giác \({A_1}{B_1}{C_1}\) đồng dạng tam giác \(ABC\) theo tỉ số \(k = 3\) nên \(\frac{{{S_{{A_1}{B_1}{C_1}}}}}{{{S_{ABC}}}} = {k^2} = 9\)

\( \Rightarrow {S_{{A_1}{B_1}{C_1}}} = 9{S_{ABC}} = 9\sqrt 3 \)

Đáp án C

Câu 30: Trắc nghiệm ID: 263631

Tập xác định của hàm số: \(y = \dfrac{1}{{\sqrt {1 - cos3x} }}\) là:

Xem đáp án

Điều kiện xác định:

\(1 - \cos 3x \ne 0 \Leftrightarrow \cos 3x \ne 1\) \( \Leftrightarrow 3x \ne k2\pi  \Leftrightarrow x \ne k\dfrac{{2\pi }}{3}\,\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án B.

Câu 31: Trắc nghiệm ID: 263632

Tập giá trị của hàm số \(y = \sqrt 3 \sin 2x - cos2x\) là:

Xem đáp án

Ta có: \(y = \sqrt 3 \sin 2x - \cos 2x \)

\(\begin{array}{l}
= 2\left( {\frac{{\sqrt 3 }}{2}\sin 2x - \frac{1}{2}\cos 2x} \right)\\
= 2\left( {\cos \frac{\pi }{6}\sin 2x - \sin \frac{\pi }{6}\cos 2x} \right)
\end{array}\)

\(= 2\sin \left( {2x - \dfrac{\pi }{6}} \right)\)

\(\Rightarrow y \in \left[ { - 2;2} \right]\)

Chọn đáp án B.

Câu 32: Trắc nghiệm ID: 263633

Phương trình \(2\sin \left( {2x + \dfrac{\pi }{4}} \right) = 1\) có các họ nghiệm là:

Xem đáp án

Ta có: \(2\sin \left( {2x + \dfrac{\pi }{4}} \right) = 1\) \( \Leftrightarrow \sin \left( {2x + \dfrac{\pi }{4}} \right) = \dfrac{1}{2}\)

\( \Leftrightarrow \left[ \begin{array}{l}2x + \dfrac{\pi }{4} = \dfrac{\pi }{6} + k2\pi \\2x + \dfrac{\pi }{4} = \pi  - \dfrac{\pi }{6} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x =  - \dfrac{\pi }{{24}} + k\pi \\x = \dfrac{{7\pi }}{{24}} + k\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án D.

Câu 33: Trắc nghiệm ID: 263634

Hàm số \(y = cos2x\, - \,{\sin ^2}x\) là:

Xem đáp án

TXĐ: D=R

Ta có:

\(\begin{array}{l}
y\left( { - x} \right)\\
= \cos \left( { - 2x} \right) - {\sin ^2}\left( { - x} \right)\\
= \cos 2x - {\left( { - \sin x} \right)^2}\\
= \cos 2x - {\sin ^2}x\\
= y\left( x \right)
\end{array}\)

Hàm số đã cho là hàm số chẵn

Chọn đáp án A.

Câu 35: Trắc nghiệm ID: 263636

Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(M\left( {4;6} \right)\) và \(M'\left( { - 3;5} \right)\). Phép vị tự tâm \(I\), tỉ số \(k =  - \frac{1}{2}\) biến điểm \(M\) thành \(M'\). Tìm tọa độ tâm vị tự \(I\).

Xem đáp án

Gọi \(I\left( {a;b} \right)\)

\(M' = {V_{\left( {I; - \frac{1}{2}} \right)}}\left( M \right)\) \( \Leftrightarrow \overrightarrow {IM'}  =  - \frac{1}{2}\overrightarrow {IM} \)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l} - 3 - a =  - \frac{1}{2}\left( {4 - a} \right)\\5 - b =  - \frac{1}{2}\left( {6 - b} \right)\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 6 - 2a =  - 4 + a\\10 - 2b =  - 6 + b\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 2 = 3a\\16 = 3b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - \frac{2}{3}\\b = \frac{{16}}{3}\end{array} \right.\\ \Rightarrow I\left( { - \frac{2}{3};\frac{{16}}{3}} \right)\end{array}\)

Đáp án D

Câu 36: Trắc nghiệm ID: 263637

Trong mặt phẳng tọa độ \(Oxy\), cho \(\vec v = \left( {2; - 1} \right)\). Tìm ảnh A' của \(A\left( { - 1;2} \right)\) qua phép tịnh tiến theo vectơ \(\vec v\). 

Xem đáp án

\(A' = {T_{\overrightarrow v }}\left( A \right)\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_{A'}} =  - 1 + 2 = 1\\{y_{A'}} = 2 + \left( { - 1} \right) = 1\end{array} \right.\) \( \Rightarrow A'\left( {1;1} \right)\)

Đáp án C

Câu 37: Trắc nghiệm ID: 263638

Cho tập \(A = \left\{ {0,1,2,3,4,5,6} \right\}.\)Hỏi có thể lập được bao nhiêu chữ số có 4 chữ số khác nhau và chia hết cho 3.

Xem đáp án

Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập hợp A có các tập số con gồm 4 chữ số khác nhau chia hết cho 3 là:

\(\begin{array}{l}\left\{ {0;1;2;3} \right\},\left\{ {0;1;2;6} \right\},\left\{ {0;2;3;4} \right\},\left\{ {0;3;4;5} \right\};\\\left\{ {1;2;4;5} \right\},\left\{ {1;2;3;6} \right\},\left\{ {1;3;5;6} \right\}.\end{array}\)

Vậy số các số cần lập là: \(4\left( {4! - 3!} \right) + 3.4! = 144\)

Chọn B.

Câu 38: Trắc nghiệm ID: 263639

Số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là:

Xem đáp án

Đa giác đều có 10 cạnh nên ta có 10 đỉnh.

Một tam giác được tạo ra từ 3 đinh. Số tam giác được tạo ra là: \(C_{10}^3 = 120.\)

Chọn A.

Câu 39: Trắc nghiệm ID: 263640

Phương trình \(\cot \left( {2x + \dfrac{\pi }{3}} \right) + 1 = 0\) có các họ nghiệm là:

Xem đáp án

Ta có: \(\cot \left( {2x + \dfrac{\pi }{3}} \right) =  - 1\)\( \Leftrightarrow \cot \left( {2x + \dfrac{\pi }{3}} \right) = \cot \left( { - \dfrac{\pi }{4}} \right)\)

\( \Leftrightarrow 2x + \dfrac{\pi }{3} =  - \dfrac{\pi }{4} + k\pi \)\( \Leftrightarrow x =  - \dfrac{{7\pi }}{{24}} + k\dfrac{\pi }{2}\,\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án D.

Câu 40: Trắc nghiệm ID: 263641

Phương trình \(2co{s^2}2x\, + \,\left( {\sqrt 3  - 2} \right)cos2x\, - \sqrt 3  = 0\) có các họ nghiệm là:

Xem đáp án

Ta có: \(2{\cos ^2}2x + \left( {\sqrt 3  - 2} \right)\cos 2x - \sqrt 3  = 0\)

\( \Leftrightarrow \left( {\cos 2x - 1} \right)\left( {2\cos x + \sqrt 3 } \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}\cos 2x = 1\\\cos 2x =  - \dfrac{{\sqrt 3 }}{2}\end{array} \right. \)

\( \Leftrightarrow \left[ \begin{array}{l}
2x = k2\pi \\
2x = \pm \frac{{5\pi }}{6} + k2\pi
\end{array} \right.\)

\(\Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x =  \pm \dfrac{{5\pi }}{{12}} + k\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Chọn đáp án B.

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »