Trong mặt phẳng \(Oxy\), cho điểm \(A\left( {3; - 5} \right)\). Tìm tọa độ ảnh \(A'\) của điểm \(A\) qua phép quay \({Q_{\left( {O;\frac{\pi }{2}} \right)}}\).
A. \(A'\left( {3; - 5} \right)\).
B. \(A'\left( {5;3} \right)\).
C. \(A'\left( { - 5;3} \right)\).
D. \(A'\left( { - 3; - 5} \right)\).
Lời giải của giáo viên
ToanVN.com
\(A' = {Q_{\left( {O;\frac{\pi }{2}} \right)}}\left( A \right)\) \( \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = - {y_A} = 5\\{y_{A'}} = {x_A} = 3\end{array} \right. \Rightarrow A'\left( {5;3} \right)\)
Đáp án B
CÂU HỎI CÙNG CHỦ ĐỀ
Cho tam giác ABC vuông tại A có đường cao AH, biết AB = 3; AC = 4. Phép dời hình biến A thành A’, biến H thành H’. Khi đó độ dài đoạn A’H’ bằng:
Trong khai triển \({\left( {2x - 1} \right)^{10}}\), hệ số của số hạng chứa \({x^8}\) là:
Cho \(\Delta ABC\) đều cạnh 2. Qua ba phép đồng dạng liên tiếp: Phép tịnh tiến \({T_{\overrightarrow {BC} }}\), phép quay \(Q\left( {B,\,{{60}^o}} \right)\), phép vị tự \({V_{\left( {A,\,3} \right)}}\), \(\Delta ABC\) biến thành \(\Delta {A_1}{B_1}{C_1}\). Diện tích \(\Delta {A_1}{B_1}{C_1}\) là:
Một hộp đựng 4 bi xanh và 6 bi đỏ. Lần lượt rút 2 viên bi. Xác suất để rút được một bi xanh và 1 bi đỏ là:
Tính chất nào sau đây không phải là tính chất của phép dời hình?
Trong mặt phẳng với hệ tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{x^2} + {\left( {y + 2} \right)^2} = 36\). Khi đó phép vị tự tỉ số \(k = 3\) biến đường tròn \(\left( C \right)\) thành đường tròn \(\left( {C'} \right)\) có bán kính là:
Tập xác định của hàm số \(y = f(x) = \dfrac{1}{{\sqrt {1 - sinx} }}\)
Nghiệm của phương trình \(2{\sin ^2}x + \sin x\cos x - 3{\cos ^2}x = 0\) là:
Tập giá trị của hàm số \(y = \sqrt 3 \sin 2x - cos2x\) là:
Một liên đoàn bóng đá có 10 đội, mỗi đội phải đá 4 trận với mỗi đội khác, 2 trận sân nhà và 2 trận sân khách. Số trận đấu được sắp xếp là:
Nghiệm của phương trình \(\sin 2x = \dfrac{{\sqrt 2 }}{2}\) là:
Trong mặt phẳng tọa độ \(Oxy\), cho \(\vec v = \left( {2; - 1} \right)\). Tìm ảnh A' của \(A\left( { - 1;2} \right)\) qua phép tịnh tiến theo vectơ \(\vec v\).
Cho hình chữ nhật tâm \(O\) (không phải là hình vuông). Hỏi có bao nhiêu phép quay tâm \(O\) góc \(\alpha \) với \(0 \le \alpha < 2\pi \), biến hình chữ nhật trên thành chính nó?
Phép biến hình nào dưới đây không phải là phép dời hình?
Trong mặt phẳng tọa độ \(Oxy\), cho hai đường thẳng \(d:x + 3y - 4 = 0\) và \(d':x + 3y - 11 = 0\). Biết rằng phép tịnh tiến theo vectơ \(\overrightarrow v \) biến \(d\) thành \(d'\). Phương án nào dưới đây đúng?
