Đề thi giữa HK1 môn Toán 11 năm 2020 - Trường THPT Lương Thế Vinh

Đề thi giữa HK1 môn Toán 11 năm 2020 - Trường THPT Lương Thế Vinh

  • Hocon247

  • 30 câu hỏi

  • 60 phút

  • 31 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 264752

Tập xác định của hàm số: \(y = \dfrac{1}{{\sqrt {1 - cos3x} }}\) là:

Xem đáp án

Điều kiện xác định:

\(1 - \cos 3x \ne 0 \Leftrightarrow \cos 3x \ne 1\) \( \Leftrightarrow 3x \ne k2\pi \Leftrightarrow x \ne k\dfrac{{2\pi }}{3}\,\left( {k \in \mathbb{Z}} \right)\)

Câu 2: Trắc nghiệm ID: 264753

Tập giá trị của hàm số \(y = \sqrt 3 \sin 2x - cos2x\) là:

Xem đáp án

Ta có: \(y = \sqrt 3 \sin 2x - \cos 2x \)

\(\begin{array}{l} = 2\left( {\frac{{\sqrt 3 }}{2}\sin 2x - \frac{1}{2}\cos 2x} \right)\\ = 2\left( {\cos \frac{\pi }{6}\sin 2x - \sin \frac{\pi }{6}\cos 2x} \right) \end{array}\)

\(= 2\sin \left( {2x - \dfrac{\pi }{6}} \right)\) \(\Rightarrow y \in \left[ { - 2;2} \right]\)

Câu 3: Trắc nghiệm ID: 264754

Phương trình \(2\sin \left( {2x + \dfrac{\pi }{4}} \right) = 1\) có các họ nghiệm là:

Xem đáp án

Ta có:

\(2\sin \left( {2x + \dfrac{\pi }{4}} \right) = 1\) \( \Leftrightarrow \sin \left( {2x + \dfrac{\pi }{4}} \right) = \dfrac{1}{2}\)

\(\Leftrightarrow \left[ \begin{array}{l}2x + \dfrac{\pi }{4} = \dfrac{\pi }{6} + k2\pi \\2x + \dfrac{\pi }{4} = \pi - \dfrac{\pi }{6} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = - \dfrac{\pi }{{24}} + k\pi \\x = \dfrac{{7\pi }}{{24}} + k\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

Câu 4: Trắc nghiệm ID: 264755

Hàm số \(y = cos2x\, - \,{\sin ^2}x\) là:

Xem đáp án

TXĐ: D=R

Ta có:

\(\begin{array}{l} y\left( { - x} \right)\\ = \cos \left( { - 2x} \right) - {\sin ^2}\left( { - x} \right)\\ = \cos 2x - {\left( { - \sin x} \right)^2}\\ = \cos 2x - {\sin ^2}x\\ = y\left( x \right) \end{array}\)

Hàm số đã cho là hàm số chẵn

Câu 5: Trắc nghiệm ID: 264756

Phương trình \(\cot \left( {2x + \dfrac{\pi }{3}} \right) + 1 = 0\) có các họ nghiệm là:

Xem đáp án

Ta có: 

\(\cot \left( {2x + \dfrac{\pi }{3}} \right) = - 1\)\( \Leftrightarrow \cot \left( {2x + \dfrac{\pi }{3}} \right) = \cot \left( { - \dfrac{\pi }{4}} \right)\)

\( \Leftrightarrow 2x + \dfrac{\pi }{3} = - \dfrac{\pi }{4} + k\pi \)\( \Leftrightarrow x = - \dfrac{{7\pi }}{{24}} + k\dfrac{\pi }{2}\,\left( {k \in \mathbb{Z}} \right)\)

Câu 6: Trắc nghiệm ID: 264757

Phương trình \(2co{s^2}2x\, + \,\left( {\sqrt 3 - 2} \right)cos2x\, - \sqrt 3 = 0\) có các họ nghiệm là:

Xem đáp án

Ta có: \(2{\cos ^2}2x + \left( {\sqrt 3 - 2} \right)\cos 2x - \sqrt 3 = 0\)

\( \Leftrightarrow \left( {\cos 2x - 1} \right)\left( {2\cos x + \sqrt 3 } \right) = 0\)

\(\Leftrightarrow \left[ \begin{array}{l}\cos 2x = 1\\\cos 2x = - \dfrac{{\sqrt 3 }}{2}\end{array} \right. \)

\( \Leftrightarrow \left[ \begin{array}{l} 2x = k2\pi \\ 2x = \pm \frac{{5\pi }}{6} + k2\pi \end{array} \right.\)

\(\Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \pm \dfrac{{5\pi }}{{12}} + k\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Câu 7: Trắc nghiệm ID: 264758

Phương trình \(\sqrt 2 {\mathop{\rm sinx}\nolimits} - \sqrt 2 \cos x = \sqrt 3\) có các họ nghiệm là:

Xem đáp án

Ta có: \(\sqrt 2 \sin x - \sqrt 2 \cos x = \sqrt 3 \)

\(\begin{array}{l} \Leftrightarrow \sqrt 2 \left( {\sin x - \cos x} \right) = \sqrt 3 \\ \Leftrightarrow \sqrt 2 .\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = \sqrt 3 \end{array}\)

\(\Leftrightarrow 2\sin \left( {x - \dfrac{\pi }{4}} \right) = \sqrt 3 \)

\(\Leftrightarrow \sin \left( {x - \dfrac{\pi }{4}} \right) = \dfrac{{\sqrt 3 }}{2}\)\( \Leftrightarrow \sin \left( {x - \dfrac{\pi }{4}} \right) = \sin \dfrac{\pi }{3}\)

\(\Leftrightarrow \left[ \begin{array}{l}x - \dfrac{\pi }{4} = \dfrac{\pi }{3} + k2\pi \\x - \dfrac{\pi }{4} = \pi- \dfrac{\pi }{3} + k2\pi \end{array} \right. \)\(\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{7\pi }}{{12}} + k2\pi \\x = \dfrac{11\pi }{{12}} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)

Câu 8: Trắc nghiệm ID: 264759

Tổng các nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\) của phương trình \(\cos 5x + \cos x = \sin 2x - \sin 4x\) là:

Xem đáp án

Ta có:

\(\cos 5x + \cos x = \sin 2x - \sin 4x\)\( \Leftrightarrow 2\cos 3x.\cos 2x = - 2\cos 3x\sin x\)\( \Leftrightarrow 2\cos 3x\left( {\cos 2x + \sin x} \right) = 0\)\( \Leftrightarrow 2\cos 3x\left( { - 2{{\sin }^2}x + \sin x + 1} \right) = 0\)\( \Leftrightarrow 2\cos 3x\left( {1 - \sin x} \right)\left( {2\sin x + 1} \right) = 0\)

\(\Leftrightarrow \left[ \begin{array}{l}\cos 3x = 0\\\sin x = 1\\\sin x = - \dfrac{1}{2}\end{array} \right. \)\(\Leftrightarrow \left[ \begin{array}{l}3x = \dfrac{\pi }{2} + k\pi \\x = \dfrac{\pi }{2} + k2\pi \\x = - \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{7\pi }}{6} + k2\pi \end{array} \right. \)\(\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{6} + k\dfrac{\pi }{3}\\x = \dfrac{\pi }{2} + k2\pi \\x = - \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{7\pi }}{6} + k2\pi \end{array} \right.\quad \left( {k \in \mathbb{Z}} \right)\)

Các nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\) là \(\left\{ { - \dfrac{{5\pi }}{6}; - \dfrac{\pi }{2}; - \dfrac{\pi }{6};\dfrac{\pi }{6};\dfrac{\pi }{2};\dfrac{{5\pi }}{6}} \right\}\)

 

Tổng các nghiệm bằng: 0

Câu 9: Trắc nghiệm ID: 264760

Giá trị nhỏ nhất của hàm số \(y = \dfrac{{\sin x + 2\cos x + 1}}{{\cos x - 3\sin x + 4}}\) là:

Xem đáp án

Ta có:

\(y = \dfrac{{\sin x + 2\cos x + 1}}{{\cos x - 3\sin x + 4}} \) \(\Leftrightarrow y\left( {\cos x - 3\sin x + 4} \right) = \sin x + 2\cos x + 1\)

\(\Leftrightarrow \left( {y - 2} \right)\cos x - \left( {3y + 1} \right)\sin x = 1 - 4y\)

Điều kiện có nghiệm: \({\left( {y - 2} \right)^2} + {\left( {3y + 1} \right)^2} \ge {\left( {1 - 4y} \right)^2}\)

\(\Leftrightarrow {y^2} - 4y + 4 + 9{y^2} + 6y + 1 \ge 1 - 8y + 16{y^2}\)

\(\Leftrightarrow 6{y^2} - 10y - 4 \le 0 \) \(\Leftrightarrow - \dfrac{1}{3} \le y \le 2\)

Giá trị nhỏ nhất của hàm số là \(\dfrac{{ - 1}}{3}\)

Câu 10: Trắc nghiệm ID: 264761

Phương trình \(3{\sin ^2}x - 7\sin x\cos x - 10{\cos ^2}x = 0\) có các họ nghiệm là:

Xem đáp án

Ta có: \(3{\sin ^2}x - 7\sin x\cos x - 10{\cos ^2}x = 0\)

\(\begin{array}{l} \Leftrightarrow 3{\sin ^2}x - 10\sin x\cos x + 3\sin x\cos x - 10{\cos ^2}x = 0\\ \Leftrightarrow \sin x\left( {3\sin x - 10\cos x} \right) + \cos x\left( {3\sin x - 10\cos x} \right) = 0 \end{array}\)

\(\Leftrightarrow \left( {3\sin x - 10\cos x} \right)\left( {\sin x + \cos x} \right) = 0\)

\(\Leftrightarrow \left[ \begin{array}{l}3\sin x = 10\cos x\\\sin x = - \cos x\end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}\tan x = \dfrac{{10}}{3}\\\tan x = - 1\end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x = - \dfrac{\pi }{4} + k\pi \\x = \arctan \left( {\dfrac{{10}}{3}} \right) + k\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

Câu 11: Trắc nghiệm ID: 264762

Phương trình \(2\sin x = \sqrt 2\) có bao nhiêu nghiệm thuộc \(\left( {\pi ;6\pi } \right)\)

Xem đáp án

Ta có: \(2\sin x = \sqrt 2 \Leftrightarrow \sin x = \dfrac{{\sqrt 2 }}{2}\)

\(\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k2\pi \\x = \dfrac{{3\pi }}{4} + k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)

+ Với \(x = \dfrac{\pi }{4} + k2\pi \Rightarrow \pi < \dfrac{\pi }{4} + k2\pi < 6\pi \) \( \Rightarrow \dfrac{3}{8} < k < \dfrac{{23}}{8} \Leftrightarrow k \in \left\{ {1;2} \right\}\)

\(\to\) Có 2 nghiệm tương ứng.

+ Với \(x = \dfrac{{3\pi }}{4} + k2\pi \Rightarrow \pi < \dfrac{{3\pi }}{4} + k2\pi < 6\pi \) \( \Rightarrow \dfrac{1}{8} < k < \dfrac{{21}}{8} \Rightarrow k \in \left\{ {1;2} \right\}\)

\(\to\) Có 2 nghiệm tương ứng.

Câu 12: Trắc nghiệm ID: 264763

Từ các số 1,2,3 có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau:

Xem đáp án

Số có 1 chữ số nên có \(C_3^1 = 3\) cách chọn.

Số có 2 chữ số nên có \(P_3^2 = 6\) cách chọn.

Số có 3 chữ số nên có 3! cách chọn.

Số cách lập là: 3 + 6 + 3! = 15.

Câu 13: Trắc nghiệm ID: 264764

Tìm số nguyên dương n sao cho \(C_n^1 + C_n^2 + C_n^3 = \dfrac{{7n}}{2}\)

Xem đáp án

Ta có

\(\begin{array}{l}C_n^1 + C_n^2 + C_n^3 = \dfrac{{7n}}{2}\\ \Leftrightarrow \dfrac{{n!}}{{\left( {n - 1} \right)!}} + \dfrac{{n!}}{{2!.\left( {n - 2} \right)!}} + \dfrac{{n!}}{{3!.\left( {n - 3} \right)!}} = \dfrac{{7n}}{2}\\ \Leftrightarrow n + \dfrac{{n\left( {n - 1} \right)}}{2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{6} = \dfrac{{7n}}{2}\\ \Leftrightarrow 2 + n - 1 + \dfrac{{{n^2} - 3n + 2}}{3} = 7\\ \Leftrightarrow {n^2} = 16\\ \Leftrightarrow n = 4(n > 0)\end{array}\)

Câu 14: Trắc nghiệm ID: 264765

Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ:

Xem đáp án

Nếu bạn nam ngồi ghế đầu tiên của hàng dọc thì có 3! cách xếp bạn nam và 3! cách xếp bạn nữ.

Nếu bạn nữ ngồi ghế đầu tiên của hàng dọc thì có 3! cách xếp bạn nữ và 3! cách xếp bạn nam.

Khi đó số cách xếp là: 2.(3!)= 72 (cách xếp)

Câu 15: Trắc nghiệm ID: 264766

Tìm số hạng không chứa x trong khai triển \({\left( {x - \dfrac{2}{x}} \right)^{12}}(x \ne 0)\)

Xem đáp án

Ta có:

\(\begin{array}{l}{\left( {x - \dfrac{2}{x}} \right)^{12}}\\ = C_{12}^0.{x^{12}} + C_{12}^1.{x^{11}}{\left( {\dfrac{{ - 2}}{x}} \right)^1} \\+ ... + C_{12}^6.{x^6}{\left( {\dfrac{{ - 2}}{x}} \right)^6} + ... + C_{12}^{12}{\left( {\dfrac{{ - 2}}{x}} \right)^{12}}\\ = C_{12}^0.{x^{12}} + C_{12}^1.{x^{10}}\left( { - 2} \right) \\+ ... + C_{12}^6.{\left( { - 2} \right)^6} + ... + C_{12}^{12}{\left( {\dfrac{{ - 2}}{x}} \right)^{12}}\end{array}\)

Số hạng không chứa x là: \(C_{12}^6{\left( { - 2} \right)^6} = 59136\)

Câu 16: Trắc nghiệm ID: 264767

Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ:

Xem đáp án

Số cách chọn trong đó có 2 nữ là: \(C_6^2.C_7^2\)

Số cách chọn trong đó có 3 nữ là: \(C_6^3.C_7^1\)

Số cách chọn trong đó có 4 nữ là: \(C_6^4\)

Vậy số cách cần chọn là: \((C_7^2.C_6^2) + (C_7^1.C_6^3) + C_6^4\)

Câu 17: Trắc nghiệm ID: 264768

Có 3 nam và 3 nữ cần xếp ngồi vào một hàng ghế. Hỏi có mấy cách xếp sao cho nam, nữ ngồi xen kẽ và có một người nam A, một người nữ B phải ngồi cạnh nhau 

Xem đáp án

Coi cách chọn bạn nam A và bạn nữ B là 1 ghế, nên ta có 5 cách chọn.

Chọn thứ tự ngồi của 2 bạn là 2 cách.

Xếp 2 nam còn lại vào vị trí ta được 2! cách.

Xếp 2 nữ còn lại vào vị trí ta được 2! Cách.

Khi đó số cách xếp là: 5.2.(2!)= 40 (cách xếp)

Câu 18: Trắc nghiệm ID: 264769

Trong khai triển \({\left( {a - 2b} \right)^8}\) hệ số của số hạng chứa \({a^4}.{b^4}\) là:

Xem đáp án

Ta có \({\left( {a - 2b} \right)^8} = C_8^0.{a^8} + C_8^1.{a^7}.\left( { - 2b} \right) + ... + C_8^8.{\left( { - 2b} \right)^8}\)

Hệ số của số hạng chứa a4.b4 là \(C_8^4{\left( { - 2} \right)^4} = 1120\)

Câu 19: Trắc nghiệm ID: 264770

Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:

Xem đáp án

Xác suất xuất hiện mặt 6 chấm là: \(\dfrac{1}{6}\)

Câu 20: Trắc nghiệm ID: 264771

Một bình chứa 16 viên bi với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được cả 3 viên bi đỏ. 

Xem đáp án

Ta có \(n\left( \Omega \right) = C_{16}^3 = 560\)

Gọi A là: “lấy được 3 viên bi đỏ”. Khi đó \(n\left( A \right) = C_3^3 = 1\)

Suy ra \(P\left( A \right) = \dfrac{1}{{560}}\)

Câu 21: Trắc nghiệm ID: 264772

Cho các số 1,2,4,5,7 có bao nhiêu cách tạo ra một số chẵn gồm 3 chữ số khác nhau từ 5 chữ số đã cho:

Xem đáp án

Một số gồm 3 chữ số phân biệt lập thành từ các chữ số A={1; 2; 4; 5; 7} có dạng:

\(\overline {{a_1}{a_2}{a_3}}\), với \({a_i} \in A,i = \overline {1,3}\)\({a_i} \ne {a_j},i \ne j.\)

Do \(\overline {{a_1}{a_2}{a_3}}\) là số chẵn nên \({a_3} \in \left\{ {2;4} \right\}\) => Có 2 cách chọn.

Khi đó, \({a_2}\) => có \(C_4^1\) cách chọn.

\({a_1}\) => có \(C_3^1\) cách chọn.

Số cách chọn là \(2.C_4^1.C_3^1 = 24\)

Câu 22: Trắc nghiệm ID: 264773

Giá trị n thỏa mãn \(3A_n^2 - A_{2n}^2 + 42 = 0\) là:

Xem đáp án

Ta có:

\(\begin{array}{l}3A_n^2 - A_{2n}^2 + 42 = 0\\ \Leftrightarrow 3.\dfrac{{n!}}{{\left( {n - 2} \right)!}} - \dfrac{{\left( {2n} \right)!}}{{\left( {2n - 2} \right)!}} + 42 = 0\\ \Leftrightarrow 3.n\left( {n - 1} \right) - 2n\left( {2n - 1} \right) + 42 = 0\\ \Leftrightarrow - {n^2} - n + 42 = 0\\ \Leftrightarrow n = 7(n > 0)\end{array}\)

Câu 23: Trắc nghiệm ID: 264774

Rút một lá bài từ bộ bài gồm 52 lá. Xác suất để được lá át hay lá rô là:

Xem đáp án

Ta có \(n\left( \Omega \right) = C_{52}^1 = 52.\)

Số cách rút để được lá át hay lá rô là \(n\left( A \right) = C_{17}^1 = 17.\)

Xác suất cần có là: \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \dfrac{{17}}{{52}}\)

Câu 25: Trắc nghiệm ID: 264776

Trong một lớp học có 20 học sinh nữ và 15 học sinh nam. Hỏi giáo viên chủ nhiệm có bao nhiêu cách chọn 3 học sinh làm ba nhiệm vụ: lớp trưởng, lớp phó và bí thư

Xem đáp án

Chọn lớp trưởng trong 35 học sinh ta có \(C_{35}^1 = 35\) cách chọn.

Chọn lớp phó trong 34 học sinh ta có \(C_{34}^1 = 34\) cách chọn.

Chọn bí thư tronh 33 học sinh ta có \(C_{33}^1 = 33\) cách chọn.

Vậy cô giáo có 35.34.33 = 39270 cách chọn.

Câu 26: Trắc nghiệm ID: 264777

Cho hình bình hành ABCD. Ảnh của điểm D qua phép tịnh tiến theo véctơ \(\overrightarrow {AB}\) là:

Xem đáp án

Ta có: \(\overrightarrow {DC} = \overrightarrow {AB} \Rightarrow {T_{\overrightarrow {AB} }}\left( D \right) = C\)

Câu 27: Trắc nghiệm ID: 264778

Phép tịnh tiến theo \(\overrightarrow v = \left( {1;0} \right)\) biến điểm \(A\left( { - 2;3} \right)\) thành

Xem đáp án

\(A' = {T_{\overrightarrow v }}\left( A \right)\) \( \Rightarrow \left\{ \begin{array}{l}x' = - 2 + 1 = - 1\\y' = 3 + 0 = 3\end{array} \right.\) \( \Rightarrow A'\left( { - 1;3} \right)\)

Câu 28: Trắc nghiệm ID: 264779

Trong mặt phẳng tọa độ Oxy, tìm phương trình đường thẳng \(\Delta '\) là ảnh của đường thẳng \(\Delta :x + 2y - 1 = 0\) qua phép tịnh tiến theo véctơ \(\vec v = \left( {1; - 1} \right)\)

Xem đáp án

Lấy \(M\left( {x;y} \right)\) bất kì thuộc \(\Delta \)

\(M' = {T_{\overrightarrow v }}\left( M \right) \Rightarrow \left\{ \begin{array}{l}x' = x + 1\\y' = y - 1\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}x = x' - 1\\y = y' + 1\end{array} \right.\)

Thay \(\left\{ \begin{array}{l}x = x' - 1\\y = y' + 1\end{array} \right.\) vào phương trình \(\Delta \) ta được:

\(\begin{array}{l}\left( {x' - 1} \right) + 2\left( {y' + 1} \right) - 1 = 0\\ \Leftrightarrow x' + 2y' = 0\\ \Rightarrow M' \in \Delta ':x + 2y = 0\end{array}\)

Câu 29: Trắc nghiệm ID: 264780

Trong mặt phẳng với hệ tọa độ Oxy , cho điểm A(1;2) và một góc \(\alpha = {90^0}\). Tìm trong các điểm sau điểm nào là ảnh của A qua qua phép quay tâm O góc quay \(\alpha = {90^0}\)

Xem đáp án

\(A' = {Q_{\left( {O;{{90}^0}} \right)}}\left( A \right)\) \( \Rightarrow \left\{ \begin{array}{l}x' = - y = - 2\\y' = x = 1\end{array} \right. \Rightarrow A'\left( { - 2;1} \right)\)

Câu 30: Trắc nghiệm ID: 264781

Trong mặt phẳng tọa độ Oxy, cho đường tròn \(\left( {\rm{C}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 4\). Ảnh của \(\left( {\rm{C}} \right)\) qua phép vị tự tâm \(I = \left( {2; - 2} \right)\) tỉ số vị tự bằng 3 là đường tròn có phương trình

Xem đáp án

(C ) có tâm \(J\left( {1;2} \right)\) và bán kính R = 2

Gọi \(J' = {V_{\left( {I;3} \right)}}\left( J \right) \Rightarrow \overrightarrow {IJ'} = 3\overrightarrow {IJ} \)

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}x' - 2 = 3\left( {1 - 2} \right)\\y' + 2 = 3\left( {2 + 2} \right)\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}x' = - 1\\y' = 10\end{array} \right. \Rightarrow J'\left( { - 1;10} \right)\end{array}\)

Đường tròn (C’) có tâm \(J'\left( { - 1;10} \right)\) bán kính \(R' = 3R = 3.2 = 6\)

Vậy \(\left( {C'} \right):{\left( {x + 1} \right)^2} + {\left( {y - 10} \right)^2} = 36.\)

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »