Trong mặt phẳng với hệ tọa độ Oxy , cho điểm A(1;2) và một góc \(\alpha = {90^0}\). Tìm trong các điểm sau điểm nào là ảnh của A qua qua phép quay tâm O góc quay \(\alpha = {90^0}\)
A. \(A'(1; - 2)\)
B. \(A'(2;1)\)
C. \(A'( - 2;1)\)
D. \(A'( - 2; - 1)\)
Lời giải của giáo viên
ToanVN.com
\(A' = {Q_{\left( {O;{{90}^0}} \right)}}\left( A \right)\) \( \Rightarrow \left\{ \begin{array}{l}x' = - y = - 2\\y' = x = 1\end{array} \right. \Rightarrow A'\left( { - 2;1} \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho các số 1,2,4,5,7 có bao nhiêu cách tạo ra một số chẵn gồm 3 chữ số khác nhau từ 5 chữ số đã cho:
Tập giá trị của hàm số \(y = \sqrt 3 \sin 2x - cos2x\) là:
Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ:
Cho hình bình hành ABCD. Ảnh của điểm D qua phép tịnh tiến theo véctơ \(\overrightarrow {AB}\) là:
Trong khai triển \({\left( {a - 2b} \right)^8}\) hệ số của số hạng chứa \({a^4}.{b^4}\) là:
Có 3 bông hồng vàng, 3 bông hồng trắng và 4 bông hồng đỏ ( các bông hoa xem như đôi một khác nhau ). Người ta muốn chọn ra một bó hoa gồm 7 bông. Hỏi có bao nhiêu cách chọn sao cho có đúng một bông màu đỏ:
Tổng các nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\) của phương trình \(\cos 5x + \cos x = \sin 2x - \sin 4x\) là:
Có 3 nam và 3 nữ cần xếp ngồi vào một hàng ghế. Hỏi có mấy cách xếp sao cho nam, nữ ngồi xen kẽ và có một người nam A, một người nữ B phải ngồi cạnh nhau
Trong mặt phẳng tọa độ Oxy, cho đường tròn \(\left( {\rm{C}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 4\). Ảnh của \(\left( {\rm{C}} \right)\) qua phép vị tự tâm \(I = \left( {2; - 2} \right)\) tỉ số vị tự bằng 3 là đường tròn có phương trình
Tìm số hạng không chứa x trong khai triển \({\left( {x - \dfrac{2}{x}} \right)^{12}}(x \ne 0)\)
Tập xác định của hàm số: \(y = \dfrac{1}{{\sqrt {1 - cos3x} }}\) là:
Trong một lớp học có 20 học sinh nữ và 15 học sinh nam. Hỏi giáo viên chủ nhiệm có bao nhiêu cách chọn 3 học sinh làm ba nhiệm vụ: lớp trưởng, lớp phó và bí thư
Một bình chứa 16 viên bi với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được cả 3 viên bi đỏ.
Giá trị nhỏ nhất của hàm số \(y = \dfrac{{\sin x + 2\cos x + 1}}{{\cos x - 3\sin x + 4}}\) là:
