Trong các mệnh đề sau đây, tìm mệnh đề đúng.
A. Nếu mp \(\left( \alpha \right)\) song song với mp \(\left( \beta \right)\) và đường thẳng \(a \subset \left( \alpha \right)\) thì a song song \(\left( \beta \right)\).
B. Nếu mp \(\left( \alpha \right)\) song song với mp \(\left( \beta \right)\) và đường thẳng \(a \subset \left( \alpha \right)\), đường thẳng \(b \subset \left( \beta \right)\) thì a song song với b.
C. Nếu đường thẳng a song song với mp \(\left( \alpha \right)\) và đường thẳng b song song \(\left( \beta \right)\) thì a song song song với b.
D. Nếu đường thẳng a song song với đường thẳng b và \(a \subset \left( \alpha \right)\,,\,\,b \subset \left( \beta \right)\) thì \(\left( \alpha \right)\,,\,\left( \beta \right)\) song song với nhau.
Lời giải của giáo viên
ToanVN.com
Nếu mp \(\left( \alpha \right)\) song song với mp \(\left( \beta \right)\) và đường thẳng \(a \subset \left( \alpha \right)\) thì a song song \(\left( \beta \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hai vec tơ \(\overrightarrow a \,,\,\,\overrightarrow b \) không cùng phương và vec tơ \(\overrightarrow c \). Điều kiện cần và đủ để ba vec tơ \(\overrightarrow a \,,\,\overrightarrow b \,,\,\overrightarrow c \) đồng phẳng là:
Tính \(\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 4}}\) bằng?
Giả sử \(\lim \,{u_n} = L,\,\lim {v_n} = M\). Chọn mệnh đề đúng:
Tính \(\mathop {\lim }\limits_{x \to - \infty } ({x^2} + x - 1)\)
Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {4 - {x^2}} }\\1\end{array}} \right.\,\,\begin{array}{*{20}{c}}{, - 2 \le x \le 2}\\{,x > 2}\end{array}\). Tìm khẳng định đúng trong các khẳng định sau:
(1) \(f(x)\)không xác định tại x = 3
(2) \(f(x)\)liên tục tại x = -2
(3) \(\mathop {\lim }\limits_{x \to 2} f(x) = 2\)
Tính \(\mathop {\lim }\limits_{x \to 2} \sqrt {\dfrac{{{x^4} + 3x - 1}}{{2{x^2} - 1}}} \) bằng?
Chọn kết quả đúng của \(\lim \dfrac{{\sqrt {{n^3} - 2n + 5} }}{{3 + 5n}}\)
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[3]{{x + 1}} - 1}}{{\sqrt[4]{{2x + 1}} - 1}}\)
Tính \(\mathop {\lim }\limits_{x \to 1} \dfrac{{x + 1}}{{x - 2}}\)
Cho hình chóp S. ABC có đáy là tam giác đều cạnh a, \(SA \bot (ABC)\,,SA = \dfrac{a}{2}\).Từ A kẻ \(AH \bot SM\) với M là trung điểm của của BC. Khi dđó góc giữa hai vec tơ \(\overrightarrow {SA} \,,\overrightarrow {AH} \) bằng:
Tìm khẳng định đúng trong các khẳng định sau
(1) \(f(x) = {x^5} - {x^2} + 1\) liên tục trên \(\mathbb{R}\)
(2) \(f(x) = \dfrac{1}{{\sqrt {{x^2} - 1} }}\) liên tục trên khoảng (-1;1)
(3) \(f(x) = \sqrt {x - 2} \) liên tục trên \({\rm{[}}2; + \infty )\)
