Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {4 - {x^2}} }\\1\end{array}} \right.\,\,\begin{array}{*{20}{c}}{, - 2 \le x \le 2}\\{,x > 2}\end{array}\). Tìm khẳng định đúng trong các khẳng định sau:
(1) \(f(x)\)không xác định tại x = 3
(2) \(f(x)\)liên tục tại x = -2
(3) \(\mathop {\lim }\limits_{x \to 2} f(x) = 2\)
A. Chỉ (1)
B. Chỉ (1), (2)
C. Chỉ (1), (3)
D. Tất cả đều sai
Lời giải của giáo viên
ToanVN.com
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f(x) = 1\\\mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\sqrt {4 - {x^2}} } \right) = 0\end{array}\) \(\mathop {\lim }\limits_{x \to {2^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {2^ + }} f(x)\) nên không tồn tại giới hạn của f(x) khi \(x \to 2\)
\(\mathop {\lim }\limits_{x \to - 2} f(x) = \mathop {\lim }\limits_{x \to - 2} \left( {\sqrt {4 - {x^2}} } \right) = 0\)
\(f( - 2) = \left( {\sqrt {4 - {x^2}} } \right) = 0\) \(\mathop {\lim }\limits_{x \to - 2} f(x) = f\left( { - 2} \right)\) suy ra \(f(x)\)liên tục tại x = -2
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hai vec tơ \(\overrightarrow a \,,\,\,\overrightarrow b \) không cùng phương và vec tơ \(\overrightarrow c \). Điều kiện cần và đủ để ba vec tơ \(\overrightarrow a \,,\,\overrightarrow b \,,\,\overrightarrow c \) đồng phẳng là:
Tính \(\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 4}}\) bằng?
Giả sử \(\lim \,{u_n} = L,\,\lim {v_n} = M\). Chọn mệnh đề đúng:
Tính \(\mathop {\lim }\limits_{x \to - \infty } ({x^2} + x - 1)\)
Tính \(\mathop {\lim }\limits_{x \to 2} \sqrt {\dfrac{{{x^4} + 3x - 1}}{{2{x^2} - 1}}} \) bằng?
Chọn kết quả đúng của \(\lim \dfrac{{\sqrt {{n^3} - 2n + 5} }}{{3 + 5n}}\)
Tính \(\mathop {\lim }\limits_{x \to 1} \dfrac{{x + 1}}{{x - 2}}\)
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[3]{{x + 1}} - 1}}{{\sqrt[4]{{2x + 1}} - 1}}\)
Cho hàm số \(f(x) = \sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} \). Khẳng định nào sau đây là đúng?
Tìm khẳng định đúng trong các khẳng định sau
(1) \(f(x) = {x^5} - {x^2} + 1\) liên tục trên \(\mathbb{R}\)
(2) \(f(x) = \dfrac{1}{{\sqrt {{x^2} - 1} }}\) liên tục trên khoảng (-1;1)
(3) \(f(x) = \sqrt {x - 2} \) liên tục trên \({\rm{[}}2; + \infty )\)
