Cho hàm số \(f(x) = \sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} \). Khẳng định nào sau đây là đúng?
A. Giới hạn của \(f(x)\) khi \(x \to \infty \) là 0.
B. Giới hạn của \(f(x)\) khi \(x \to \infty \) là 2.
C. Giới hạn của \(f(x)\) khi \(x \to \infty \) là -2.
D. Không tồn tại giới hạn của \(f(x)\) khi \(x \to \infty \).
Lời giải của giáo viên
ToanVN.com
\(\begin{array}{l}\mathop {\lim }\limits_{x \to \infty } f(x) = \mathop {\lim }\limits_{x \to \infty } (\sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} )\\ = \mathop {\lim }\limits_{x \to \infty } \dfrac{{4x}}{{\sqrt {{x^2} + 2x + 4} + \sqrt {{x^2} - 2x + 4} }}\\ = \mathop {\lim }\limits_{x \to \infty } \dfrac{{4x}}{{x\left( {\sqrt {1 + \dfrac{2}{x} + \dfrac{4}{{{x^2}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{4}{{{x^2}}}} } \right)}}\\ = \mathop {\lim }\limits_{x \to \infty } \dfrac{4}{{\left( {\sqrt {1 + \dfrac{2}{x} + \dfrac{4}{{{x^2}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{4}{{{x^2}}}} } \right)}} = 2\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tính \(\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 4}}\) bằng?
Cho hai vec tơ \(\overrightarrow a \,,\,\,\overrightarrow b \) không cùng phương và vec tơ \(\overrightarrow c \). Điều kiện cần và đủ để ba vec tơ \(\overrightarrow a \,,\,\overrightarrow b \,,\,\overrightarrow c \) đồng phẳng là:
Giả sử \(\lim \,{u_n} = L,\,\lim {v_n} = M\). Chọn mệnh đề đúng:
Tính \(\mathop {\lim }\limits_{x \to - \infty } ({x^2} + x - 1)\)
Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {4 - {x^2}} }\\1\end{array}} \right.\,\,\begin{array}{*{20}{c}}{, - 2 \le x \le 2}\\{,x > 2}\end{array}\). Tìm khẳng định đúng trong các khẳng định sau:
(1) \(f(x)\)không xác định tại x = 3
(2) \(f(x)\)liên tục tại x = -2
(3) \(\mathop {\lim }\limits_{x \to 2} f(x) = 2\)
Tính \(\mathop {\lim }\limits_{x \to 2} \sqrt {\dfrac{{{x^4} + 3x - 1}}{{2{x^2} - 1}}} \) bằng?
Tính \(\mathop {\lim }\limits_{x \to 1} \dfrac{{x + 1}}{{x - 2}}\)
Chọn kết quả đúng của \(\lim \dfrac{{\sqrt {{n^3} - 2n + 5} }}{{3 + 5n}}\)
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[3]{{x + 1}} - 1}}{{\sqrt[4]{{2x + 1}} - 1}}\)
Cho hình chóp S. ABC có đáy là tam giác đều cạnh a, \(SA \bot (ABC)\,,SA = \dfrac{a}{2}\).Từ A kẻ \(AH \bot SM\) với M là trung điểm của của BC. Khi dđó góc giữa hai vec tơ \(\overrightarrow {SA} \,,\overrightarrow {AH} \) bằng:
