Chọn câu sai
A. Qua một điểm O cho trước có duy nhất một mặt phẳng (P) vuông góc với đường thẳng a.
B. Nếu một đường thẳng vuông góc với hai cạnh cắt nhau của một ngũ giác trong mặt phẳng thì đường thẳng đó vuông góc với ba cạnh còn lại.
C. Nếu một đường thẳng vuông góc với hai cạnh của một tứ giác trong một mặt phẳng thì nó cũng vuông góc với hai cạnh còn lại
D. Trong một tam giác ABC, một đường thẳng vuông góc với hai cạnh của một tam giác thì nó vuông góc với cạnh còn lại.
Lời giải của giáo viên
ToanVN.com
Nếu một đường thẳng vuông góc với hai cạnh của một tứ giác trong một mặt phẳng thì nó cũng vuông góc với hai cạnh còn lại ⇒ Sai
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hai vec tơ \(\overrightarrow a \,,\,\,\overrightarrow b \) không cùng phương và vec tơ \(\overrightarrow c \). Điều kiện cần và đủ để ba vec tơ \(\overrightarrow a \,,\,\overrightarrow b \,,\,\overrightarrow c \) đồng phẳng là:
Tính \(\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 4}}\) bằng?
Tính \(\mathop {\lim }\limits_{x \to - \infty } ({x^2} + x - 1)\)
Giả sử \(\lim \,{u_n} = L,\,\lim {v_n} = M\). Chọn mệnh đề đúng:
Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {4 - {x^2}} }\\1\end{array}} \right.\,\,\begin{array}{*{20}{c}}{, - 2 \le x \le 2}\\{,x > 2}\end{array}\). Tìm khẳng định đúng trong các khẳng định sau:
(1) \(f(x)\)không xác định tại x = 3
(2) \(f(x)\)liên tục tại x = -2
(3) \(\mathop {\lim }\limits_{x \to 2} f(x) = 2\)
Tính \(\mathop {\lim }\limits_{x \to 2} \sqrt {\dfrac{{{x^4} + 3x - 1}}{{2{x^2} - 1}}} \) bằng?
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[3]{{x + 1}} - 1}}{{\sqrt[4]{{2x + 1}} - 1}}\)
Tính \(\mathop {\lim }\limits_{x \to 1} \dfrac{{x + 1}}{{x - 2}}\)
Cho hình chóp S. ABC có đáy là tam giác đều cạnh a, \(SA \bot (ABC)\,,SA = \dfrac{a}{2}\).Từ A kẻ \(AH \bot SM\) với M là trung điểm của của BC. Khi dđó góc giữa hai vec tơ \(\overrightarrow {SA} \,,\overrightarrow {AH} \) bằng:
Chọn kết quả đúng của \(\lim \dfrac{{\sqrt {{n^3} - 2n + 5} }}{{3 + 5n}}\)
Tìm khẳng định đúng trong các khẳng định sau
(1) \(f(x) = {x^5} - {x^2} + 1\) liên tục trên \(\mathbb{R}\)
(2) \(f(x) = \dfrac{1}{{\sqrt {{x^2} - 1} }}\) liên tục trên khoảng (-1;1)
(3) \(f(x) = \sqrt {x - 2} \) liên tục trên \({\rm{[}}2; + \infty )\)
Cho hàm số \(f(x) = \sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} \). Khẳng định nào sau đây là đúng?
