Tìm một phân số có mẫu số bằng \(15\), biết rằng nếu trừ đi ở tử số \(10\) đơn vị và cộng thêm vào mẫu số \(10\) đơn vị thì ta được phân số mới có giá trị gấp \(\frac{8}{5}\) lần phân số ban đầu.
A. \(\frac{{ - 6}}{{15}}\)
B. \(\frac{{ 6}}{{15}}\)
C. \(\frac{{ 15}}{{6}}\)
D. \(\frac{{ - 15}}{{6}}\)
Lời giải của giáo viên
ToanVN.com
Gọi phân số ban đầu là \(\frac{x}{{15}}\,\,\left( {x \in \mathbb{Z}} \right)\).
Theo đề bài, nếu trừ đi ở tử số \(10\) đơn vị và cộng thêm vào mẫu số \(10\) đơn vị thì phân số mới là \(\frac{{x - 10}}{{15 + 10}}\)
Phân số mới gấp \(\frac{8}{5}\) phân số ban đầu nên ta có phương trình:
\(\begin{array}{l}\frac{{x - 10}}{{15 + 10}} = \frac{8}{5} \cdot \frac{x}{{15}}\\\frac{{x - 10}}{{25}} = \frac{{8x}}{{75}}\\25.\frac{{x - 10}}{{25}} = 25.\frac{{8x}}{{75}}\\\frac{{x - 10}}{1} = \frac{{8x}}{3}\\3x - 30 = 8x\\3x - 8x = 30\\ - 5x = 30\\x = - 6\,\left( {tm} \right)\end{array}\)
Vậy phân số cần tìm là \(\frac{{ - 6}}{{15}}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm số dư khi chia \(A = 1 + 5 + {5^2} + {5^3} + {5^4}\)\( + {5^5} + {5^6} + {5^7} + {5^8} + {5^9}\) cho \(31\).
Cho ∠xOy và ∠yOy' là hai góc kề bù. Biết ∠xOy = 80°, số đo của ∠yOy' là:
Thực hiện các phép tính: \(A = \dfrac{{ - 5}}{{12}} - 3:\dfrac{9}{4}\,\,;\,\,\)
Tổng tất cả các số nguyên \(x\) thỏa mãn \( - 2 \le x \le 2\) bằng
Trên tia \(Ax\) lấy hai điểm \(B\) và \(C\) sao cho \(AC = 3cm,\,\,AB = 8cm\). Khi đó độ dài của đoạn thẳng \(BC\) bằng:
Trên cùng một nửa mặt phẳng bờ chứa\(Ox\), vẽ hai tia \(Oy\) và \(Oz\) sao cho \(\widehat {xOy} = 60^\circ \) và \(\widehat {xOz} = 120^\circ \), khi đó
Thực hiện các phép tính: \(C = \dfrac{{ - 2018}}{{2019}}.\dfrac{2}{7} - \dfrac{{2018}}{{2019}}.\dfrac{5}{7} + 1\dfrac{{2018}}{{2019}}\)
Trên cùng một nửa mặt phẳng bờ là tia Ox có ∠xOy = 30°, ∠xOz = 65°, chọn phát biểu đúng trong các phát biểu sau:
“Tam giác MNP là hình gồm ba cạnh … khi ba điểm M,N,P ...”. Các cụm từ thích hợp vào chỗ trống lần lượt là:
Trên đường thẳng \(xx'\) lấy điểm \(O\). Trên cùng một nửa mặt phẳng có bờ là \(xx'\), vẽ hai tia \(Oy\) và \(Oz\) sao cho số đo góc \(xOy\) bằng \({20^0}\), số đo góc \(xOz\) bằng \({100^0}\). Tính số đo góc \(yOz\).
Trên cùng một nửa mặt phẳng bờ chứa tia \(Ox\) vẽ \(\angle xOy = {70^0},\)\(\angle xOz = {140^0}\). Tính số đo của \(\angle yOz\).
Thực hiện phép tính: \(\frac{5}{9} \cdot \frac{7}{{13}} + \frac{5}{9} \cdot \frac{9}{{13}} + \frac{3}{{13}} \cdot \frac{{ - 5}}{9}\)
Phân số nghịch đảo của phân số \(\dfrac{5}{{14}}\) là: