Lời giải của giáo viên
ToanVN.com
.png)
Theo định nghĩa, \(Om\)là tia phân giác của góc \(\angle xOy\) nếu thỏa mãn điều kiện sau:
+ Tia \(Om\) nằm giữa hai tia \(Ox\) và \(Oy\)
+ \(\angle xOm = \angle mOy\)
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho ∠xOy và ∠yOy' là hai góc kề bù. Biết ∠xOy = 80°, số đo của ∠yOy' là:
Tìm số dư khi chia \(A = 1 + 5 + {5^2} + {5^3} + {5^4}\)\( + {5^5} + {5^6} + {5^7} + {5^8} + {5^9}\) cho \(31\).
Tổng tất cả các số nguyên \(x\) thỏa mãn \( - 2 \le x \le 2\) bằng
Thực hiện các phép tính: \(A = \dfrac{{ - 5}}{{12}} - 3:\dfrac{9}{4}\,\,;\,\,\)
Trên cùng một nửa mặt phẳng bờ chứa tia \(Ox\) vẽ \(\angle xOy = {70^0},\)\(\angle xOz = {140^0}\). Tính số đo của \(\angle yOz\).
Trên tia \(Ax\) lấy hai điểm \(B\) và \(C\) sao cho \(AC = 3cm,\,\,AB = 8cm\). Khi đó độ dài của đoạn thẳng \(BC\) bằng:
Trên cùng một nửa mặt phẳng bờ chứa\(Ox\), vẽ hai tia \(Oy\) và \(Oz\) sao cho \(\widehat {xOy} = 60^\circ \) và \(\widehat {xOz} = 120^\circ \), khi đó
Thực hiện các phép tính: \(C = \dfrac{{ - 2018}}{{2019}}.\dfrac{2}{7} - \dfrac{{2018}}{{2019}}.\dfrac{5}{7} + 1\dfrac{{2018}}{{2019}}\)
Tính: \(S = 1 + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} + \dfrac{1}{{1 + 2 + 3 + 4}} + \) \(... + \dfrac{1}{{1 + 2 + 3 + 4 + ... + 8}}\)
Thực hiện phép tính: \(\frac{5}{9} \cdot \frac{7}{{13}} + \frac{5}{9} \cdot \frac{9}{{13}} + \frac{3}{{13}} \cdot \frac{{ - 5}}{9}\)
Trên đường thẳng \(xx'\) lấy điểm \(O\). Trên cùng một nửa mặt phẳng có bờ là \(xx'\), vẽ hai tia \(Oy\) và \(Oz\) sao cho số đo góc \(xOy\) bằng \({20^0}\), số đo góc \(xOz\) bằng \({100^0}\). Tính số đo góc \(yOz\).
Vẽ tia \(OA\) và \(OB\) sao cho \(\widehat {AOB} = 90^\circ \), lấy điểm \(C\) nằm giữa hai điểm \(A\) và \(B\) sao cho \(\widehat {AOC} = 40^\circ \). Trên nửa mặt phẳng bờ chứa tia \(OA\) và chứa điểm \(B\), vẽ tia \(OD\) sao cho \(\widehat {AOD} = 140^\circ \). Tính \(\widehat {BOD}\).
Phân số nghịch đảo của phân số \(\dfrac{5}{{14}}\) là:
Thực hiện các phép tính: \(B = \left( {1\dfrac{5}{{12}} + 3.\dfrac{7}{{36}}} \right):\left( { - \dfrac{2}{{2019}}} \right)\)