Lời giải của giáo viên
ToanVN.com
.png)
Vì tia \(Oy\) nằm giữa hai tia \(Ox\) và \(Oz\) nên ta có:
\(\begin{array}{l}\angle xOy + \angle yOz = \angle xOz\\ \Leftrightarrow \angle yOz = \angle xOz - \angle xOy\\ \Leftrightarrow \angle yOz = {140^0} - {70^0}\\ \Leftrightarrow \angle yOz\, = {70^0}\end{array}\)
Vậy \(\angle yOz = {70^0}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho ∠xOy và ∠yOy' là hai góc kề bù. Biết ∠xOy = 80°, số đo của ∠yOy' là:
Tìm số dư khi chia \(A = 1 + 5 + {5^2} + {5^3} + {5^4}\)\( + {5^5} + {5^6} + {5^7} + {5^8} + {5^9}\) cho \(31\).
Thực hiện các phép tính: \(A = \dfrac{{ - 5}}{{12}} - 3:\dfrac{9}{4}\,\,;\,\,\)
Tổng tất cả các số nguyên \(x\) thỏa mãn \( - 2 \le x \le 2\) bằng
Trên tia \(Ax\) lấy hai điểm \(B\) và \(C\) sao cho \(AC = 3cm,\,\,AB = 8cm\). Khi đó độ dài của đoạn thẳng \(BC\) bằng:
Trên cùng một nửa mặt phẳng bờ chứa\(Ox\), vẽ hai tia \(Oy\) và \(Oz\) sao cho \(\widehat {xOy} = 60^\circ \) và \(\widehat {xOz} = 120^\circ \), khi đó
Thực hiện các phép tính: \(C = \dfrac{{ - 2018}}{{2019}}.\dfrac{2}{7} - \dfrac{{2018}}{{2019}}.\dfrac{5}{7} + 1\dfrac{{2018}}{{2019}}\)
Trên cùng một nửa mặt phẳng bờ là tia Ox có ∠xOy = 30°, ∠xOz = 65°, chọn phát biểu đúng trong các phát biểu sau:
“Tam giác MNP là hình gồm ba cạnh … khi ba điểm M,N,P ...”. Các cụm từ thích hợp vào chỗ trống lần lượt là:
Trên đường thẳng \(xx'\) lấy điểm \(O\). Trên cùng một nửa mặt phẳng có bờ là \(xx'\), vẽ hai tia \(Oy\) và \(Oz\) sao cho số đo góc \(xOy\) bằng \({20^0}\), số đo góc \(xOz\) bằng \({100^0}\). Tính số đo góc \(yOz\).
Thực hiện phép tính: \(\frac{5}{9} \cdot \frac{7}{{13}} + \frac{5}{9} \cdot \frac{9}{{13}} + \frac{3}{{13}} \cdot \frac{{ - 5}}{9}\)
Tính: \(S = 1 + \dfrac{1}{{1 + 2}} + \dfrac{1}{{1 + 2 + 3}} + \dfrac{1}{{1 + 2 + 3 + 4}} + \) \(... + \dfrac{1}{{1 + 2 + 3 + 4 + ... + 8}}\)
Phân số nghịch đảo của phân số \(\dfrac{5}{{14}}\) là: