Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\), đáy \(ABC\) là tam giác vuông tại đỉnh C. Gọi AH, AK lần lượt là đường cao các tam giác SAB, SAC. Khẳng định nào dưới đây đúng?
A. K là hình chiếu vuông góc của A trên mặt phẳng (SBC)
B. H là hình chiếu vuông góc của A trên mặt phẳng (SBC)
C. B là hình chiếu vuông góc của C trên mặt phẳng (SAB)
D. A là hình chiếu vuông góc của S trên mặt phẳng (AHK)
Lời giải của giáo viên
ToanVN.com
.png)
Ta có: \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\)
Mà \(BC \bot AC\) (do \(\Delta ABC\) vuông tại \(C\))
\( \Rightarrow BC \bot \left( {SAC} \right) \Rightarrow BC \bot AK\)
Lại có \(AK \bot SC\left( {gt} \right)\) nên \(AK \bot \left( {SBC} \right)\).
Vậy K là hình chiếu của A lên \(\left( {SBC} \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho cấp số cộng \(\left( {{u_n}} \right)\) biết \({u_1} = - 7,{S_{20}} = 620\). Tìm công sai \(d\)?
Trong các hàm số sau, hàm số nào liên tục trên \(\mathbb{R}\)?
Tiếp tuyến của đồ thị hàm số \(y = \frac{{{x^3}}}{3} - {x^2} - 2x\) có hệ số góc \(k = - 3\) có phương trình là
Một chất điểm chuyển động có phương trình \(s = 2{t^3} + {t^2} + 1\) (t tính bằng giây, s tính bằng mét). Vận tốc của chất điểm tại thời điểm \({t_0} = 2\) (giây) bằng
Cho hàm số \(f(x) = {\left( {{x^2} - 3x} \right)^2}\). Tính \(f'(1)\).
Giới hạn\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{5}{{x - 1}}\) bằng
Cho hình lập phương \(ABCD.EFGH\). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và\(\overrightarrow {DH} \).
Cho hình chóp tứ giác \(S.ABCD\) có SA vuông góc với mặt phẳng (ABCD). Đáy \(ABCD\) là hình chữ nhật, \(SA = AB = a,BC = a\sqrt 2 \). Gọi \(\alpha \) là góc giữa hai đường thẳng \(AD\) và \(SC\). Tính số đo góc \(\alpha \).
Trong các dãy số \(\left( {{u_n}} \right)\) sau đây, dãy số giảm là
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 2a. Tính cosin của góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {ABCD} \right)\).
Biết \(\mathop {\lim }\limits_{x \to - \infty } \left( {ax + \sqrt {{x^2} + bx + 1} } \right) = \frac{1}{2}\). Tính \(A = 2a + b\)
Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Tìm mệnh đề đúng trong các mệnh đề sau:
Biết \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + m\;x + 2019} + x} \right) = - 3\). Giá trị của \(m\) bằng
Giới hạn \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 9}}{{x - 3}}\) bằng
