Lời giải của giáo viên
ToanVN.com
ABCD là hình thoi nên \(AC \bot BD\) tại trung điểm O của mỗi đường.
SA=SC nên tam giác SAC cân tại S\( \Rightarrow SO \bot AC\)
SB=SD nên tam giác SBD cân tại S\( \Rightarrow SO \bot BD\)
Ta có: \(\left\{ \begin{array}{l}SO \bot AC\\SO \bot BD\end{array} \right.\) \( \Rightarrow SO \bot \left( {ABCD} \right)\) nên C đúng.
Lại có: \(\left\{ \begin{array}{l}BD \bot SO\\BD \bot AC\end{array} \right. \Rightarrow BD \bot \left( {SAC} \right)\) nên A đúng.
\(\left\{ \begin{array}{l}AC \bot SO\\AC \bot BD\end{array} \right. \Rightarrow AC \bot \left( {SBD} \right)\) nên D đúng.
Đáp án B sai vì CD không thể vuông góc với AC.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho cấp số cộng \(\left( {{u_n}} \right)\) biết \({u_1} = - 7,{S_{20}} = 620\). Tìm công sai \(d\)?
Tiếp tuyến của đồ thị hàm số \(y = \frac{{{x^3}}}{3} - {x^2} - 2x\) có hệ số góc \(k = - 3\) có phương trình là
Trong các hàm số sau, hàm số nào liên tục trên \(\mathbb{R}\)?
Cho hàm số \(f(x) = {\left( {{x^2} - 3x} \right)^2}\). Tính \(f'(1)\).
Trong các dãy số \(\left( {{u_n}} \right)\) sau đây, dãy số giảm là
Giới hạn\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{5}{{x - 1}}\) bằng
Một chất điểm chuyển động có phương trình \(s = 2{t^3} + {t^2} + 1\) (t tính bằng giây, s tính bằng mét). Vận tốc của chất điểm tại thời điểm \({t_0} = 2\) (giây) bằng
Cho hình lập phương \(ABCD.EFGH\). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và\(\overrightarrow {DH} \).
Biết \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + m\;x + 2019} + x} \right) = - 3\). Giá trị của \(m\) bằng
Biết \(\mathop {\lim }\limits_{x \to - \infty } \left( {ax + \sqrt {{x^2} + bx + 1} } \right) = \frac{1}{2}\). Tính \(A = 2a + b\)
Giới hạn \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 9}}{{x - 3}}\) bằng
Cho các hàm số \(u = u(x),v = v(x)\). Trong các công thức sau, công thức nào sai?
Cho hình lập phương \(ABCD.A'B'C'D'\). Mệnh đề nào sau đây sai?
Cho hình chóp tứ giác \(S.ABCD\) có SA vuông góc với mặt phẳng (ABCD). Đáy \(ABCD\) là hình chữ nhật, \(SA = AB = a,BC = a\sqrt 2 \). Gọi \(\alpha \) là góc giữa hai đường thẳng \(AD\) và \(SC\). Tính số đo góc \(\alpha \).
