Biết rằng phương trình \({x^5} + {x^3} + 3x - 1 = 0\) có ít nhất 1 nghiệm \({x_0},\) mệnh đề nào dưới đây đúng ?
A. \({x_0} \in \left( {0;1} \right).\)
B. \({x_0} \in \left( { - 1;0} \right).\)
C. \({x_0} \in \left( {1;2} \right).\)
D. \({x_0} \in \left( { - 2; - 1} \right).\)
Lời giải của giáo viên
ToanVN.com
Hàm số \(y = {x^5} + {x^3} + 3x - 1\) liên tục trên \(\mathbb{R}\) nên hàm số liên tục trên \(\left( {0;1} \right)\).
Ta có: \(\left\{ \begin{array}{l}f\left( 0 \right) = - 1\\f\left( 1 \right) = 4\end{array} \right.\)\( \Rightarrow f\left( 0 \right).f\left( { - 1} \right) < 0\)
\( \Rightarrow \) Tồn tại ít nhất 1 nghiệm \({x_0} \in \left( {0;1} \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông cạnh \(a\). Đường thẳng \(SA\) vuông góc với mặt phẳng chứa đáy \(\left( {ABCD} \right)\), độ dài cạnh \(SA\) bằng \(2a\) (Tham khảo hình vẽ bên).
Đường thẳng nào dưới đây vuông góc với mặt phẳng \(\left( {SAB} \right)\)?
.png)
Hàm số \(y = \left( {1 + x} \right)\sqrt {1 - x} \)có đạo hàm \(y' = \frac{{ax + b}}{{2\sqrt {1 - x} }}\). Tính \(a + b.\)
Cho hàm số \(y = f\left( x \right)\) có đạo hàm đến cấp 2 trên tập số thực. Tìm hệ thức đúng?
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên tập số thực, biết \(f\left( {3 - x} \right) = {x^2} + x\). Tính \(f'\left( 2 \right)\).
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên tập số thực. Tìm hệ thức đúng?
Tính giới hạn: \(\lim \frac{{2n + 3}}{{{n^2} + 2n + 4}}\)
Lập phương trình tiếp tuyến của đồ thị hàm số \(y = {x^2} + 3x + 1\) tại điểm có hoành độ bằng 1.
Giải phương trình \(f''\left( x \right) = 0\), biết \(f\left( x \right) = {x^3} - 3{x^2}\).
Cho hàm số \(y = f\left( x \right) = {x^2} + mx\) (m là tham số). Tìm m, biết \(f'\left( 1 \right) = 3\).
Biết \(\mathop {\lim }\limits_{x \to 2} f(x) = 3.\)Tính \(\mathop {\lim }\limits_{x \to 2} \left[ {f\left( x \right) + x} \right].\)
Cho dãy số \({u_n}\) thỏa \(\mathop {\lim }\limits_{} {u_n} = 2.\) Tính \(\mathop {\lim }\limits_{} \left( {{u_n} + \frac{{{2^n}}}{{{2^n} + 3}}} \right).\)
Hàm số \(y = \frac{{\sqrt {{x^2} + 2x + 3} }}{x}\) có đạo hàm \(y' = \frac{{ax + b}}{{{x^2}\sqrt {{x^2} + 2x + 3} }}\). Tìm \(\max \left\{ {a,b} \right\}.\)
Tìm hệ số của \({x^2}\) trong khai triển \({\left( {{x^2} + x + 2} \right)^3}\) thành đa thức:
Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông cạnh \(a\). Đường thẳng \(SA\) vuông góc với mặt phẳng chứa đáy \(\left( {ABCD} \right)\), độ dài cạnh \(SA\) bằng \(2a\) (Tham khảo hình vẽ bên). Đường thẳng nào dưới đây vuông góc với mặt phẳng \(\left( {ABCD} \right)\)?
.png)
Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông cạnh \(a\). Đường thẳng \(SA\) vuông góc với mặt phẳng chứa đáy \(\left( {ABCD} \right)\), độ dài cạnh \(SA\) bằng \(2a\). Mặt phẳng nào dưới đây vuông góc với mặt phẳng \(\left( {SAB} \right)\)?
