Lời giải của giáo viên
ToanVN.com
Ta có: \(f'\left( x \right) = 2x + m\)
\( \Rightarrow f'\left( 1 \right) = 2 + m = 3 \Leftrightarrow m = 1\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông cạnh \(a\). Đường thẳng \(SA\) vuông góc với mặt phẳng chứa đáy \(\left( {ABCD} \right)\), độ dài cạnh \(SA\) bằng \(2a\) (Tham khảo hình vẽ bên).
Đường thẳng nào dưới đây vuông góc với mặt phẳng \(\left( {SAB} \right)\)?
.png)
Hàm số \(y = \left( {1 + x} \right)\sqrt {1 - x} \)có đạo hàm \(y' = \frac{{ax + b}}{{2\sqrt {1 - x} }}\). Tính \(a + b.\)
Tính giới hạn: \(\lim \frac{{2n + 3}}{{{n^2} + 2n + 4}}\)
Cho hàm số \(y = f\left( x \right)\) có đạo hàm đến cấp 2 trên tập số thực. Tìm hệ thức đúng?
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên tập số thực, biết \(f\left( {3 - x} \right) = {x^2} + x\). Tính \(f'\left( 2 \right)\).
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên tập số thực. Tìm hệ thức đúng?
Cho dãy số \({u_n}\) thỏa \(\mathop {\lim }\limits_{} {u_n} = 2.\) Tính \(\mathop {\lim }\limits_{} \left( {{u_n} + \frac{{{2^n}}}{{{2^n} + 3}}} \right).\)
Biết \(\mathop {\lim }\limits_{x \to 2} f(x) = 3.\)Tính \(\mathop {\lim }\limits_{x \to 2} \left[ {f\left( x \right) + x} \right].\)
Lập phương trình tiếp tuyến của đồ thị hàm số \(y = {x^2} + 3x + 1\) tại điểm có hoành độ bằng 1.
Hàm số \(y = \frac{{\sqrt {{x^2} + 2x + 3} }}{x}\) có đạo hàm \(y' = \frac{{ax + b}}{{{x^2}\sqrt {{x^2} + 2x + 3} }}\). Tìm \(\max \left\{ {a,b} \right\}.\)
Tìm hệ số của \({x^2}\) trong khai triển \({\left( {{x^2} + x + 2} \right)^3}\) thành đa thức:
Giải phương trình \(f''\left( x \right) = 0\), biết \(f\left( x \right) = {x^3} - 3{x^2}\).
Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông cạnh \(a\). Đường thẳng \(SA\) vuông góc với mặt phẳng chứa đáy \(\left( {ABCD} \right)\), độ dài cạnh \(SA\) bằng \(2a\). Mặt phẳng nào dưới đây vuông góc với mặt phẳng \(\left( {SAB} \right)\)?
Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông cạnh \(a\). Đường thẳng \(SA\) vuông góc với mặt phẳng chứa đáy \(\left( {ABCD} \right)\), độ dài cạnh \(SA\) bằng \(2a\) (Tham khảo hình vẽ bên). Đường thẳng nào dưới đây vuông góc với mặt phẳng \(\left( {ABCD} \right)\)?
.png)
\(\mathop {\lim }\limits_{x \to 1} ({x^2} - 2x - 3)\) bằng
