Câu hỏi Đáp án 3 năm trước 39

Tìm hệ số của \({x^2}\) trong khai triển  \({\left( {{x^2} + x + 2} \right)^3}\) thành đa thức:

A. 12

B. 18

Đáp án chính xác ✅

C. 19

D. 20

Lời giải của giáo viên

verified ToanVN.com

\(\begin{array}{l}{\left( {{x^2} + x + 2} \right)^3}\\ = \sum\limits_{k = 0}^3 {C_3^k{{\left( {{x^2}} \right)}^{3 - k}}{{\left( {x + 2} \right)}^k}} \\ = \sum\limits_{k = 0}^3 {C_3^k{x^{6 - 2k}}\sum\limits_{l = 0}^k {C_k^l{x^l}{2^{k - l}}} } \end{array}\).

(với \(0 \le k \le 3;\,\,0 \le l \le 3;\,\,k,l \in \mathbb{Z}\))

Hệ số của \({x^2}\) trong khai triển trên ứng với: \(6 - 2k + l = 2\)\( \Leftrightarrow 2k - l = 4\) \( \Leftrightarrow \left[ \begin{array}{l}k = 2;l = 0\\k = 3;l = 2\end{array} \right.\).

Vậy hệ số của \({x^2}\) trong khai triển trên là:  \(C_3^2C_2^0{2^2} + C_3^3C_3^2{.2^1} = 18\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông cạnh \(a\). Đường thẳng \(SA\) vuông góc với mặt phẳng chứa đáy \(\left( {ABCD} \right)\), độ dài cạnh \(SA\)  bằng \(2a\) (Tham khảo hình vẽ bên).

Đường thẳng nào dưới đây vuông góc với mặt phẳng \(\left( {SAB} \right)\)?

Xem lời giải » 3 năm trước 44
Câu 2: Trắc nghiệm

Hàm số \(y = \left( {1 + x} \right)\sqrt {1 - x} \)có đạo hàm \(y' = \frac{{ax + b}}{{2\sqrt {1 - x} }}\). Tính \(a + b.\)

Xem lời giải » 3 năm trước 42
Câu 3: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên tập số thực, biết \(f\left( {3 - x} \right) = {x^2} + x\). Tính \(f'\left( 2 \right)\).

Xem lời giải » 3 năm trước 41
Câu 4: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đạo hàm đến cấp 2 trên tập số thực. Tìm hệ thức đúng?

Xem lời giải » 3 năm trước 41
Câu 5: Trắc nghiệm

Tính giới hạn: \(\lim \frac{{2n + 3}}{{{n^2} + 2n + 4}}\)

Xem lời giải » 3 năm trước 41
Câu 6: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên tập số thực. Tìm hệ thức đúng?

Xem lời giải » 3 năm trước 40
Câu 7: Trắc nghiệm

Cho dãy số \({u_n}\) thỏa \(\mathop {\lim }\limits_{} {u_n} = 2.\) Tính \(\mathop {\lim }\limits_{} \left( {{u_n} + \frac{{{2^n}}}{{{2^n} + 3}}} \right).\)

Xem lời giải » 3 năm trước 40
Câu 8: Trắc nghiệm

Biết \(\mathop {\lim }\limits_{x \to 2} f(x) = 3.\)Tính \(\mathop {\lim }\limits_{x \to 2} \left[ {f\left( x \right) + x} \right].\)

Xem lời giải » 3 năm trước 40
Câu 9: Trắc nghiệm

Lập phương trình tiếp tuyến của đồ thị hàm số \(y = {x^2} + 3x + 1\) tại điểm có hoành độ bằng 1.

Xem lời giải » 3 năm trước 40
Câu 10: Trắc nghiệm

\(\mathop {\lim }\limits_{x \to 1} ({x^2} - 2x - 3)\) bằng

Xem lời giải » 3 năm trước 39
Câu 11: Trắc nghiệm

Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông cạnh \(a\). Đường thẳng \(SA\) vuông góc với mặt phẳng chứa đáy \(\left( {ABCD} \right)\), độ dài cạnh \(SA\)  bằng \(2a\). Mặt phẳng nào dưới đây vuông góc với mặt phẳng \(\left( {SAB} \right)\)?

Xem lời giải » 3 năm trước 39
Câu 12: Trắc nghiệm

Cho hàm số \(y = f\left( x \right) = {x^2} + mx\) (m là tham số). Tìm m, biết \(f'\left( 1 \right) = 3\).

Xem lời giải » 3 năm trước 39
Câu 13: Trắc nghiệm

Cho dãy số \({u_n},{v_n}\) thỏa \(\mathop {\lim }\limits_{} {u_n} = 2;\,\,\mathop {\lim }\limits_{} {v_n} = 1.\)Tính \(\mathop {\lim }\limits_{} \left( {2{u_n} - 3{v_n}} \right).\)

Xem lời giải » 3 năm trước 39
Câu 14: Trắc nghiệm

Đạo hàm của hàm số \(y = \frac{{x + 1}}{{x - 1}}\) bằng

Xem lời giải » 3 năm trước 39
Câu 15: Trắc nghiệm

Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình vuông cạnh \(a\). Đường thẳng \(SA\) vuông góc với mặt phẳng chứa đáy \(\left( {ABCD} \right)\), độ dài cạnh \(SA\)  bằng \(2a\) (Tham khảo hình vẽ bên). Đường thẳng nào dưới đây vuông góc với mặt phẳng \(\left( {ABCD} \right)\)?

Xem lời giải » 3 năm trước 39

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »