Đề thi giữa HK1 môn Toán 11 năm 2020 - Trường THPT Trần Hưng Đạo
-
Hocon247
-
30 câu hỏi
-
60 phút
-
34 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Hàm số \(y = \sin 3x.\cos x\) là một hàm số tuần hoàn có chu kì là
Ta có: \(y = \sin 3x.\cos x = \dfrac{1}{2}\left( {\sin 4x + \sin 2x} \right)\)
Hàm số \(y = \sin 4x\) tuần hoàn với chu kì \({T_1} = \frac{{2\pi }}{4} = \frac{\pi }{2}\)
Hàm số \(y = \sin 2x\) tuần hoàn với chu kì \({T_2} = \frac{{2\pi }}{2} = \pi\)
Vậy hàm số \(y = \frac{1}{2}\left( {\sin 4x + \sin 2x} \right)\) tuần hoàn với chu kì \(T = BCNN\left( {\frac{\pi }{2};\pi } \right) = \pi\)
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số \(y = {\sin ^4}x - 2{\cos ^2}x + 1\)
Ta có:
\(y = {\sin ^4}x - 2{\cos ^2}x + 1 \) \(= {\sin ^4}x - 2\left( {1 - {{\sin }^2}x} \right) + 1\)
\(= {\sin ^4}x + 2{\sin ^2}x - 1 \) \(= {\left( {{{\sin }^2}x + 1} \right)^2} - 2\)
\(\begin{array}{l} 0 \le {\sin ^2}x \le 1\\ \Rightarrow 1 \le {\sin ^2}x + 1 \le 2\\ \Rightarrow 1 \le {\left( {{{\sin }^2}x + 1} \right)^2} \le 4\\ \Rightarrow - 1 \le {\left( {{{\sin }^2}x + 1} \right)^2} - 2 \le 2 \end{array}\)
\(\Rightarrow - 1 \le y \le 2\)
Tập xác định của hàm số \(y = \sqrt {1 - \cos 2017x}\) là
Điều kiện xác định: \(1 - \cos 2017x \ge 0 \Leftrightarrow \cos 2017x \le 1\) luôn đúng với mọi \(x \in \mathbb{R}\)
Vậy TXĐ: D=R.
Tìm chu kì T của hàm số \(y = \cot 3x + \tan x\) là
Chu kì của hàm số \(y = \cot 3x + \tan x\) là \(T = \pi\)
Cho hàm số \(f\left( x \right) = \left| x \right|\sin x.\) Phát biểu nào sau đây là đúng về hàm số đã cho?
Hàm số \(y = \left| x \right|\sin x\) có:
\(\begin{array}{l}y\left( { - x} \right) = \left| { - x} \right|\sin \left( { - x} \right)\\ = - \left| x \right|\sin x = - y\left( x \right)\end{array}\)
Nên là hàm số lẻ.
Do đó đồ thị hàm số nhận gốc O làm tâm đối xứng.
Trong các phương trình sau đây,phương trình nào có tập nghiệm là \(x = - \dfrac{\pi }{3} + k2\pi\) và \(x = \dfrac{{4\pi }}{3} + k2\pi ,\,\,\,(k \in \mathbb{Z})\)
Ta có:
\(\sin x = - \dfrac{{\sqrt 3 }}{2} \) \(\Leftrightarrow \left[ \begin{array}{l}x = - \dfrac{\pi }{3} + k2\pi \\x = \dfrac{{4\pi }}{3} + k2\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)
Phương trình \(\tan \left( {3x - {{15}^0}} \right) = \sqrt 3\) có các nghiệm là:
Ta có: \(\tan \left( {3x - {{15}^ \circ }} \right) = \sqrt 3\Leftrightarrow \tan \left( {3x - {{15}^ \circ }} \right) = \tan {60^ \circ }\)
\(\Leftrightarrow 3x - {15^ \circ } = {60^ \circ } + k{180^ \circ }\)
\(\Leftrightarrow x = {25^ \circ } + k{60^ \circ }\;\left( {k \in \mathbb{Z}} \right)\)
Nghiệm âm lớn nhất của phương trình \(\dfrac{{\sqrt 3 }}{{{{\sin }^2}\,x}} = 3\cot \, + \,\sqrt 3 \) là:
Điều kiện: \(\sin x \ne 0 \Leftrightarrow x \pm k\pi \,\left( {k \in \mathbb{Z}} \right)\)
Ta có: \(\dfrac{{\sqrt 3 }}{{{{\sin }^2}x}} = 3\cot x + \sqrt 3 \)
\(\begin{array}{l} \Leftrightarrow \sqrt 3 \left( {1 + {{\cot }^2}x} \right) = 3\cot x + \sqrt 3 \\ \Leftrightarrow \sqrt 3 {\cot ^2}x - 3\cot x = 0\\ \Leftrightarrow \cot x\left( {\sqrt 3 \cot x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} \cot x = 0\\ \cot x = \sqrt 3 \end{array} \right. \end{array}\)
\(\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} + k\pi \\x = \dfrac{\pi }{6} + k\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)
Nghiệm âm lớn nhất là \(- \dfrac{\pi }{2}\)
Phương trình \(sin x + cos x – 1 = 2sin xcos x\) có bao nhiêu nghiệm trên \(\left[ {0;\,2\pi } \right]\)?
Ta có: \(\sin x + \cos x - 1 = 2\sin x\cos x\)
\(\begin{array}{l} \Leftrightarrow \sin x + \cos x = 1 + 2\sin x\cos x\\ \Leftrightarrow \sin x + \cos x = {\sin ^2}x + {\cos ^2}x + 2\sin x\cos x\\ \Leftrightarrow \sin x + \cos x = {\left( {\sin x + \cos x} \right)^2} \end{array}\)
\( \Leftrightarrow \left( {\sin x + \cos x} \right)\left( {1 - \sin x - \cos x} \right) = 0\)
\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l} \sin x + \cos x = 0\\ 1 - \sin x - \cos x = 0 \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} \sin x = - \cos x\\ \sin x + \cos x = 1 \end{array} \right. \end{array}\)
\(\Leftrightarrow \left[ \begin{array}{l}\tan x = - 1\\\sin \left( {x + \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x = - \dfrac{\pi }{4} + k\pi \\x = k2\pi \\x = \dfrac{\pi }{2} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\)
Các nghiệm trên \(\left[ {0;2\pi } \right]\) là \(\left\{ {\dfrac{{3\pi }}{4};0;2\pi ;\dfrac{\pi }{2}} \right\}\)
Phương trình \(\sin (x + {10^0}) = \dfrac{1}{2}\,\,({0^0} < x < {180^0})\) có nghiệm là:
Ta có: \(\sin (x + {10^0}) = \dfrac{1}{2} \Leftrightarrow \sin (x + {10^0}) = \sin {30^ \circ }\)
\(\Leftrightarrow \left[ \begin{array}{l}x + {10^ \circ } = {30^ \circ } + k{360^ \circ }\\x + {10^ \circ } = {150^ \circ } + k{360^ \circ }\end{array} \right. \) \(\Leftrightarrow \left[ \begin{array}{l}x = {20^ \circ } + k{360^ \circ }\\x = {140^ \circ } + k{360^ \circ }\end{array} \right.\)
\({0^0} < x < {180^0}\) \( \Rightarrow {x_1} = {20^0},{x_2} = {140^0}\)
Có bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau được lập từ các số 0,2,4,6,8:
Một số gồm 3 chữ số phân biệt lập thành từ các chữ số A={0; 2; 4; 6; 8} có dạng:
\(\overline {{a_1}{a_2}{a_3}} \), với \({a_i} \in A,i = \overline {1,3} , {a_i} \ne {a_j},i \ne j.\)
Do \({a_1} \ne 0\)- có \(C_4^1 = 4\) cách chọn.
Khi đó 2 số \({a_{1,}}{a_2}\) được lấy từ 4 số còn lai sắp theo thứ tự nên có \(A_4^2 = 12\) cách.
Số cách chọn là 4.12 = 48
Giá trị của \(n \in \mathbb{N}\) thỏa mãn \(C_{n + 8}^{n + 3} = 5A_{n + 6}^3\) là:
Ta có
\(\begin{array}{l}C_{n + 8}^{n + 3} = 5A_{n + 6}^3 \\\Leftrightarrow \dfrac{{\left( {n + 8} \right)!}}{{\left( {n + 3} \right)!.5!}} = 5.\dfrac{{\left( {n + 6} \right)!}}{{\left( {n + 3} \right)!}}\\ \Leftrightarrow \left( {n + 7} \right)\left( {n + 8} \right) = 5!.5\\ \Leftrightarrow {n^2} + 15n - 544 = 0 \\\Leftrightarrow n = 17(n > 0)\end{array}\)
Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần gieo đều xuất hiện mặt sấp là:
Số phần tử của không gian mẫu là: \(\left| \Omega \right| = {2^4} = 16\)
Gọi A là biến cố: “cả 4 lần đều xuất hiện mặt sấp”
Ta có: \({P_A} = \dfrac{1}{{16}}\)
Xếp 6 người A, B, C, D, E, F vào một ghế dài . Hỏi có bao nhiêu cách sắp xếp sao cho A và F ngồi cạnh nhau:
Số cách sắp xếp của A, F: 2! = 2
Coi A và F được sắp xếp cùng 1 chỗ.
Số cách sắp xếp A, B, C, D, E: 5! = 120
Số cách xếp thỏa mãn yêu cầu bài toán: 2.120 = 240
Trong khai triển \({\left( {{a^2} + \dfrac{1}{b}} \right)^7}\) số hạng thứ 5 là:
Số hạng thứ 5 \(C_7^3{\left( {{a^2}} \right)^3}.{\left( {\dfrac{1}{b}} \right)^4} = 35{a^6}.{b^{ - 4}}\)
Có tất cả 120 cách chọn 3 học sinh từ nhóm n (chưa biết) học sinh. Số n là nghiệm của phương trình nào sau đây:
Số cách chọn 2 học sinh từ nhóm n học sinh là:
\(C_n^1.C_n^2.C_n^3\)\( = \dfrac{{n!}}{{\left( {n - 1} \right)!}}.\dfrac{{n!}}{{2!\left( {n - 2} \right)!}}.\dfrac{{n!}}{{3!\left( {n - 3} \right)!}} \)\(= \dfrac{1}{6}n\left( {n - 1} \right)\left( {n - 2} \right)\)
Theo bài ra ta có 120 cách lựa chọn nên:
\(\dfrac{1}{6}n\left( {n - 1} \right)\left( {n - 2} \right) = 120\)\( \Leftrightarrow n\left( {n - 1} \right)\left( {n - 2} \right) = 720\)
Cho hai biến số A và B có \(P(A) = \dfrac{1}{3}\,,P(B) = \dfrac{1}{4}\,,\,P(A \cup B) = \dfrac{1}{2}\). Ta kết luận hai biến cố A và B là:
Ta có \(P(A) + P(B) = \dfrac{1}{{12}}\, \ne P(A \cup B) = \dfrac{1}{2}\)
Một bình đựng 4 quả cầu xanh và 6 quả cầu trắng. Chọn ngẫu nhiên 3 quả cầu. Xác suất để được 3 quả cầu toàn màu xanh là:
Ta có \(n\left( \Omega \right) = C_{10}^3 = 120\)
Gọi A là: “3 quả cầu toàn màu xanh”. Khi đó \(n\left( A \right) = C_4^3 = 4\)
Suy ra \(P\left( A \right) = \dfrac{4}{{120}} = \dfrac{1}{{30}}\)
Một thầy giáo có 5 cuốn sách toán, 6 cuốn sách văn, 7 cuốn sách Anh văn và các cuốn sách đôi một khác nhau. Thầy giáo muốn tặng 6 cuốn sách cho 6 học sinh. Hỏi thầy giáo có bao nhiêu cách tặng nếu thầy giáo chỉ muốn tặng một hoặc hai thể loại:
Có \(C_{13}^6 = 1716\) cách chọn để không có cuốn sách toán nào.
Có \(C_{12}^6 = 924\) cách chọn để không có cuốn sách văn nào.
Có \(C_{11}^6 = 462\) cách chọn để không có cuốn sách anh nào.
Do 6 học sinh là khác nhau nên có 6! cách tặng.
Vậy có 6!.(1716 + 924 + 462) = 2233440.
Một nhóm có 5 nam và 3 nữ. Chọn ra 3 người sao cho trong đó có ít nhất 1 nữ. Hỏi có bao nhiêu cách:
Ta có \(n\left( \Omega \right) = C_8^3 = 56\)
Gọi A là: “3 người được chọn có ít nhất 1 nữ”.
Gọi \(\overline A\) là: “3 người được chọn không có nữ”. Khi đó \(n\left( {\overline A } \right) = C_5^3 = 10\)
Suy ra \(n\left( A \right) = n\left( \Omega \right) - n\left( {\overline A } \right) = 56 - 10 = 46\)
Từ tập \(A = \left\{ {0,1,2,3,4,5,6} \right\}\) ta có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau:
Một số gồm 4 chữ số phân biệt lập thành từ các chữ số A={0; 1; 2; 3; 4; 5; 6} có dạng:
\(\overline {{a_1}{a_2}{a_3}{a_4}} \), với \({a_i} \in A,i = \overline {1,4} \) và \({a_i} \ne {a_j},i \ne j.\)
Do \({a_1} \ne 0\)- có \(C_6^1 = 6\) cách chọn.
Khi đó 2 số \({a_2},{a_3},{a_4}\) được lấy từ 6 số còn lai sắp theo thứ tự nên có \(A_6^3 = 120\) cách.
Số cách chọn là 6.120 = 720
Một lớp có 20 nam và 26 nữ. Giáo viên chủ nhiệm cần chọn một ban cán sự gồm 3 người. Hỏi có bao nhiêu cách chọn nếu trong ban cán sự có cả nam và nữ.
TH1: có 1 nữ và 2 nam, số cách chọn là: \(C_{26}^1.C_{20}^2 = 4940\)
TH2: có 2 nữ và 1 nam, số cách chọn là: \(C_{26}^2.C_{20}^1 = 6500\)
Vậy có cách chọn thỏa mãn. 4940 + 6500 = 11440
Cho P, Q cố định và phép tịnh tiến T biến điểm M bất kỳ thành \({M_2}\)sao cho \(\overrightarrow {M{M_2}} = 2\overrightarrow {PQ}\). Chọn kết luận đúng
Gọi \({T_{\vec v}}\left( M \right) = {M_2} \Leftrightarrow \overrightarrow {M{M_2}} = \vec v\)
Từ \(\overrightarrow {M{M_2}} = 2\overrightarrow {PQ} \Rightarrow 2\overrightarrow {PQ} = \vec v\)
Trong mặt phẳng Oxy, phép tịnh tiến theo vectơ \(\vec v = (1;3)\) biến điểm A (1;2) thành điểm nào trong các điểm sau đây?
\({T_{\vec v}}\left( A \right) = B \Leftrightarrow \overrightarrow {AB} = \vec v \) \(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_B} = 1 + 1 = 2}\\{{y_B} = 2 + 3 = 5}\end{array}} \right. \Rightarrow B\left( {2;5} \right)\)
Giả sử rằng qua phép đối xứng trục \({{\rm{D}}_a}\)( a là trục đối xứng ), đường thẳng d biến thành đường thẳng \(d'\). Hãy chọn câu sai trong các câu sau?
Khẳng định C sai vì khi d cắt a mà d vuông góc a thì d trùng d'.
Trong mặt phẳng Oxy, cho điểm M (1;5). Tìm ảnh của M qua phép đối xứng trục Ox.
Gọi \(M'(x';y')\) là ảnh của M qua ĐOx
Khi đó \(\left\{ \begin{array}{l}x' = 1\\y' = - 5\end{array} \right. \Rightarrow M'\left( {1; - 5} \right)\)
Trong các mệnh đề sau mệnh đề nào đúng?
Phép đối xứng tâm có đúng 1 điểm biến thành chính nó. Điểm đó là tâm đối xứng.
Cho tam giác đều tâm O. Hỏi có bao nhiêu phép quay tâm O góc quay \(\alpha ,0 < \alpha \le 2\pi\) biến tam giác trên thành chính nó?
Có 3 phép quay tâm O góc \(\alpha ,0 < \alpha \le 2\pi \) biến tam giác đều tâm O thành chính nó .
Đó là các phép quay với góc quay lần lượt bằng: \(\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},2\pi \)
Cho đường thẳng d có phương trình x - y + 4 = 0. Hỏi trong các đường thẳng sau đường thẳng nào có thể biến thành d qua một phép đối xứng tâm?
Phép đối xứng tâm biến đường thẳng thành đường thẳng song song với nó.
Dựa vào các đáp án ta thấy chỉ có đường thẳng ở đáp án C song song với đường thẳng d đã cho.
Cho hai đường tròn tâm \\(\left( {I;R} \right)\) và \(\left( {I;R'} \right)\,\,\left( {R \ne R'} \right)\). Có bao nhiêu phép vị tự biến đường tròn tâm \(\left( {I;R} \right)\) thành đường tròn \(\left( {I;R'} \right)?\)

Hai đường tròn đồng tâm I, có vô số phép vị tự tâm I tỉ số \(k \ne \pm 1\) biến đường tròn này thành đường tròn kia.
