Trong mặt phẳng tọa độ Oxy, cho đường tròn \(\left( {\rm{C}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 4\). Ảnh của (C) qua phép vị tự tâm \(I = \left( {2; - 2} \right)\) tỉ số vị tự bằng 3 là đường tròn có phương trình là đáp án nào dưới đây?
A. \({\left( {x + 1} \right)^2} + {\left( {y - 10} \right)^2} = 36\)
B. \({\left( {x - 2} \right)^2} + {\left( {y - 6} \right)^2} = 36\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 10} \right)^2} = 36\)
D. \({\left( {x - 2} \right)^2} + {\left( {y + 4} \right)^2} = 36\)
Lời giải của giáo viên
ToanVN.com
(C ) có tâm \(J\left( {1;2} \right)\) và bán kính R = 2.
Gọi \(J' = {V_{\left( {I;3} \right)}}\left( J \right) \Rightarrow \overrightarrow {IJ'} = 3\overrightarrow {IJ} \)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}x' - 2 = 3\left( {1 - 2} \right)\\y' + 2 = 3\left( {2 + 2} \right)\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}x' = - 1\\y' = 10\end{array} \right. \Rightarrow J'\left( { - 1;10} \right)\end{array}\)
Đường tròn (C’) có tâm \(J'\left( { - 1;10} \right)\) bán kính R' = 3R = 3.2 = 6
Vậy \(\left( {C'} \right):{\left( {x + 1} \right)^2} + {\left( {y - 10} \right)^2} = 36.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm số hạng không chứa x trong khai triển \({\left( {x - \dfrac{2}{x}} \right)^{12}}(x \ne 0)\).
Trong khai triển \({\left( {x + \dfrac{2}{{\sqrt x }}} \right)^6}\), hệ số của \({x^3},(x > 0)\) là giá trị nào dưới đây?
Một bình chứa 16 viên bi với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được cả 3 viên bi đỏ.
Tìm số nguyên dương n sao cho \(C_n^1 + C_n^2 + C_n^3 = \dfrac{{7n}}{2}\).
Cho hình bình hành ABCD. Ảnh của điểm D qua phép tịnh tiến theo véctơ \(\overrightarrow {AB} \) là điểm nào dưới đây?
Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?
Trong khai triển \({\left( {a - 2b} \right)^8}\) hệ số của số hạng chứa \({a^4}.{b^4}\) là giá trị nào dưới đây?
Trong các phương trình sau đây,phương trình nào có tập nghiệm là \(x = - \dfrac{\pi }{3} + k2\pi \) và \(x = \dfrac{{4\pi }}{3} + k2\pi ,\,\,\,(k \in \mathbb{Z})\).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây là đúng?
Tổng các nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\) của phương trình \(\cos 5x + \cos x = \sin 2x - \sin 4x\) bằng bao nhiêu?
Nghiệm của phương trình \(\tan 4x.\cot 2x = 1\) là giá trị nào dưới đây?
Trong mặt phẳng tọa độ Oxy, tìm phương trình đường thẳng \(\Delta '\) là ảnh của đường thẳng \(\Delta :x + 2y - 1 = 0\) qua phép tịnh tiến theo véctơ \(\vec v = \left( {1; - 1} \right)\).
Giá trị nhỏ nhất của hàm số \(y = \dfrac{{\sin x + 2\cos x + 1}}{{\cos x - 3\sin x + 4}}\) là giá trị nào sau đây?
Hàm số \(y = \sin 3x.\cos x\) là một hàm số tuần hoàn có chu kì bao nhiêu?
Trong mặt phẳng với hệ tọa độ Oxy , cho điểm A(1;2) và một góc \(\alpha = {90^0}\). Tìm trong các điểm sau điểm nào là ảnh của A qua qua phép quay tâm O góc quay \(\alpha = {90^0}\).
