Lời giải của giáo viên
ToanVN.com
Điều kiện: \(\cos \alpha \ne 0 \Leftrightarrow \alpha \ne \frac{\pi }{2} + k\pi \) \((k \in Z)\)
Theo tính chất của cấp số nhân, ta có:
\({\cos ^2}\alpha = \frac{{\sin \alpha }}{6}.{\mkern 1mu} \tan \alpha \Leftrightarrow 6{\cos ^2}\alpha = \frac{{{{\sin }^2}\alpha }}{{\cos \alpha }}\)
\( \Leftrightarrow 6{\cos ^2}\alpha = \frac{{{{\sin }^2}\alpha }}{{\cos \alpha }}\)
\(\begin{array}{l} \Leftrightarrow 6{\cos ^3}\alpha - {\sin ^2}\alpha = 0\\ \Leftrightarrow 6{\cos ^3}\alpha + {\cos ^2}\alpha - 1 = 0\\ \Leftrightarrow \cos \alpha = \frac{1}{2} \end{array}\)
Ta có: \(\cos 2\alpha = 2{\cos ^2}\alpha - 1 = 2.\,{\left( {\frac{1}{2}} \right)^2} - 1 = - \frac{1}{2}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AF} \) và \(\overrightarrow {EG} \)?
Giá trị của \(\lim \frac{\cos n+\sin n}{n^{2}+1}\) bằng:
Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. Khẳng định nào sau đây sai?
Cho hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\). Góc giữa AC và \(D{A_1}\) là
Tìm giới hạn \(C=\lim\limits _{x \rightarrow+\infty}\left(\sqrt{4 x^{2}+x+1}-2 x\right)\)
Cho \(\overrightarrow a = 3{,^{}}\overrightarrow b = 5\) góc giữa \(\vec a\) và \(\vec b\) bằng 120o. Chọn khẳng định sai trong các khẳng định sau?
Cho ba vectơ\(\vec{a}, \vec{b}, \vec{c}\) không đồng phẳng. Trong các khẳng định sau, khẳng định nào sai?
Trong phương pháp quy nạp toán học, nếu ta giả sử mệnh đề đúng với (n = k ) thì ta cần chứng minh mệnh đề đúng đến:
\(\text { Tính giới hạn } L=\lim \frac{\sqrt[3]{n}+1}{\sqrt[3]{n+8}} \text { . }\)
Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:
Cho hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\). Mặt phẳng \(\left( {{A_1}BD} \right)\) không vuông góc với mặt phẳng nào dưới đây?
