Lời giải của giáo viên
ToanVN.com
Ta sắp xếp các cạnh giá trị \({u_1}; \ldots {u_n}\) tăng dần theo cấp số cộng là 3. Khi đó ta có:
\(\left\{ {\begin{array}{*{20}{c}} {{S_n} = 158}\\ {{u_n} = 44} \end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {\left( {{u_1} + 44} \right).\frac{n}{2} = 158}\\ {{u_1} + 3\left( {n - 1} \right) = 44} \end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {{u_1} = 47 - 3n}\\ {\left( {47 - 3n + 44} \right).n = 316\;\;\;\;\left( * \right)} \end{array}} \right.} \right.} \right.\)
\(\left( * \right) \Leftrightarrow 3{n^2} - 91n + 316 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {n = 4\left( {TM} \right)}\\ {n = \frac{{79}}{3}\left( L \right)} \end{array}} \right.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho ba số dương a, b, c theo thứ tự lập thành cấp số cộng. Giá trị lớn nhất của biểu thức \(P = \frac{{\sqrt {{a^2} + 8bc} + 3}}{{\sqrt {{{\left( {2a + c} \right)}^2} + 1} }}\) có dạng \(x\sqrt y \left( {x,y \in N} \right).\) Hỏi x + y bằng bao nhiêu?
Cho cấp số cộng \(\left( {{u_n}} \right):2,a,6,b.\) Tích ab bằng bao nhiêu?
Cho \(a + b + c = \frac{\pi }{2}\) và cota, cotb, cotc tạo thành cấp số cộng. Giá trị cota.cotc bằng
Cho cấp số nhân (un) có u1 = 2 và công bội q = 3. Tính u3
Cho các số \(x + 2,{\rm{ x}} + 14,{\rm{ x}} + 50\) theo thứ tự lập thành một cấp số nhân. Khi đó x3 + 2003 bằng
Cho cấp số cộng (un) có \({u_1} = - 2\) và công sai d = 3. Tìm số hạng u10.
Xác định Số hạng đầu u1 và công sai d của cấp số cộng (un) có \({u_9} = 5{u_2}\) và \({u_{13}} = 2{u_6} + 5.\)
Cho cấp số cộng có tổng của n số hạng đầu tiên được tính bởi công thức \({S_n} = 4n - {n^2}\). Gọi M là tổng của số hạng đầu tiên và công sai của cấp số cộng đó. Khi đó:
Chu vi của một đa giác là 158 cm, số đo các cạnh của nó lập thành một cấp số cộng với công sai d = 3cm. Biết cạnh lớn nhất là 44cm. Số cạnh của đa giác đó là
Cho một cấp số cộng có \({u_4} = 2,{u_2} = 4\).Hỏi u1 bằng bao nhiêu?
Cho tam giác ABC có độ dài các cạnh là a, b, c theo thứ tự lập thành một cấp số cộng. Biết \(\tan \frac{A}{2}\tan \frac{C}{2} = \frac{x}{y}\left( {x,y \in N} \right)\), giá trị x + y là
Cho một cấp số cộng (un) có \({u_1} = \frac{1}{3};{u_8} = 26.\) Tìm công sai d.
Có bao nhiêu cấp số nhân có 5 số hạng? Biết rằng tổng 5 số hạng đó là 31 và tích của chúng là 1024.
